These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32833274)

  • 21. Flexible, Highly Durable, and Thermally Stable SWCNT/Polyimide Transparent Electrodes.
    Kim SK; Liu T; Wang X
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20865-74. PubMed ID: 26323087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability.
    Hu F; An L; Chivate AT; Guo Z; Khuje SV; Huang Y; Hu Y; Armstrong J; Zhou C; Ren S
    Chem Commun (Camb); 2020 Feb; 56(15):2332-2335. PubMed ID: 31990279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer printing of thermoreversible ion gels for flexible electronics.
    Lee KH; Zhang S; Gu Y; Lodge TP; Frisbie CD
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9522-7. PubMed ID: 24028461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decomposable Flexible Organic Transistors with a Cellulose-Based Gate Dielectric and Substrate for Biodegradable Electronics.
    Konwar G; Rahi S; Tiwari SP
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35261-35271. PubMed ID: 37439156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition.
    Jang BC; Seong H; Kim SK; Kim JY; Koo BJ; Choi J; Yang SY; Im SG; Choi SY
    ACS Appl Mater Interfaces; 2016 May; 8(20):12951-8. PubMed ID: 27142537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning using Graphene and Flexible Thermoelectric Device Interfaces.
    Byun SH; Kim CS; Agno KC; Lee S; Li Z; Cho BJ; Jeong JW
    Adv Mater; 2021 Mar; 33(10):e2007239. PubMed ID: 33491832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Temperature Solution-Processed Soluble Polyimide Gate Dielectrics: From Molecular-Level Design to Electrically Stable and Flexible Organic Transistors.
    Park H; Yoo S; Ahn H; Bang J; Jeong Y; Yi M; Won JC; Jung S; Kim YH
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45949-45958. PubMed ID: 31738047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Fabrication of an All-Solid-State Polymer Supercapacitor with Highly Mechanical Flexibility Based on Polypyrrole Hydrogel.
    Zang L; Liu Q; Qiu J; Yang C; Wei C; Liu C; Lao L
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33941-33947. PubMed ID: 28891631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wood-Based Flexible Electronics.
    Fu Q; Chen Y; Sorieul M
    ACS Nano; 2020 Mar; 14(3):3528-3538. PubMed ID: 32109046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermally Superstable Cellulosic-Nanorod-Reinforced Transparent Substrates Featuring Microscale Surface Patterns.
    Biswas SK; Tanpichai S; Witayakran S; Yang X; Shams MI; Yano H
    ACS Nano; 2019 Feb; 13(2):2015-2023. PubMed ID: 30698942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.
    Shi Z; Huang J; Liu C; Ding B; Kuga S; Cai J; Zhang L
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22990-8. PubMed ID: 26397710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible Electronic Substrate Film Fabricated Using Natural Clay and Wood Components with Cross-Linking Polymer.
    Takahashi K; Ishii R; Nakamura T; Suzuki A; Ebina T; Yoshida M; Kubota M; Nge TT; Yamada T
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28247505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.
    Bazaka K; Destefani R; Jacob MV
    Sci Rep; 2016 Dec; 6():38571. PubMed ID: 27934916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoelectric Polymers and their Elastic Aerogels.
    Khan ZU; Edberg J; Hamedi MM; Gabrielsson R; Granberg H; Wågberg L; Engquist I; Berggren M; Crispin X
    Adv Mater; 2016 Jun; 28(22):4556-62. PubMed ID: 26836440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable Transparent Substrate Based on Edible Starch-Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics.
    Miao J; Liu H; Li Y; Zhang X
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23037-23047. PubMed ID: 29905073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the Chemical Structure of Ultra-Thin Polyimide Substrate for the Xenon Flash Lamp Lift-off Technology.
    Jang SH; Han YJ; Lee SY; Lee G; Jung JW; Cho KH; Choi J
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-Modified Substrates for Quantum Dot Inks in Printed Electronics.
    Meng L; Zeng T; Jin Y; Xu Q; Wang X
    ACS Omega; 2019 Feb; 4(2):4161-4168. PubMed ID: 31459625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels.
    Viggiano RP; Williams JC; Schiraldi DA; Meador MA
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8287-8296. PubMed ID: 28186399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.