BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32833532)

  • 1. Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish.
    Fricke T; Smalakyte D; Lapinski M; Pateria A; Weige C; Pastor M; Kolano A; Winata C; Siksnys V; Tamulaitis G; Bochtler M
    CRISPR J; 2020 Aug; 3(4):299-313. PubMed ID: 32833532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus.
    Tamulaitis G; Kazlauskiene M; Manakova E; Venclovas Č; Nwokeoji AO; Dickman MJ; Horvath P; Siksnys V
    Mol Cell; 2014 Nov; 56(4):506-17. PubMed ID: 25458845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos.
    Kushawah G; Hernandez-Huertas L; Abugattas-Nuñez Del Prado J; Martinez-Morales JR; DeVore ML; Hassan H; Moreno-Sanchez I; Tomas-Gallardo L; Diaz-Moscoso A; Monges DE; Guelfo JR; Theune WC; Brannan EO; Wang W; Corbin TJ; Moran AM; Sánchez Alvarado A; Málaga-Trillo E; Takacs CM; Bazzini AA; Moreno-Mateos MA
    Dev Cell; 2020 Sep; 54(6):805-817.e7. PubMed ID: 32768421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish.
    Ota S; Taimatsu K; Yanagi K; Namiki T; Ohga R; Higashijima SI; Kawahara A
    Sci Rep; 2016 Oct; 6():34991. PubMed ID: 27725766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise transcript targeting by CRISPR-Csm complexes.
    Colognori D; Trinidad M; Doudna JA
    Nat Biotechnol; 2023 Sep; 41(9):1256-1264. PubMed ID: 36690762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in Zebrafish Using CRISPR-Cas9: Applications for Developmental Toxicology.
    Warner BK; Alder JK; Suli A
    Methods Mol Biol; 2019; 1965():235-250. PubMed ID: 31069679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-Targeting CRISPR-Cas Systems and Their Applications.
    Burmistrz M; Krakowski K; Krawczyk-Balska A
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable type III-A CRISPR-Cas DNA targeting modules.
    Ichikawa HT; Cooper JC; Lo L; Potter J; Terns RM; Terns MP
    PLoS One; 2017; 12(4):e0176221. PubMed ID: 28441427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Generation of Zebrafish Mariner Model Using the CRISPR/Cas9 System.
    Zou B; Desmidt AA; Mittal R; Yan D; Richmond M; Tekin M; Liu XZ; Lu Z
    Anat Rec (Hoboken); 2020 Mar; 303(3):556-562. PubMed ID: 31260171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Genetic manipulation in zebrafish].
    Gao Y; Liu J; Wang X; Liu D
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1674-1692. PubMed ID: 29082716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A beginner's guide to gene editing.
    Harrison PT; Hart S
    Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research progress and applications of gene editing technology CRISPR/Cas in zebrafish].
    Ouyang J; Xue S; Zhou Q; Cui H
    Sheng Wu Gong Cheng Xue Bao; 2020 Jan; 36(1):1-12. PubMed ID: 32072776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.