These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32834299)

  • 1. Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system.
    Cavalcanti EJC; Carvalho M; da Silva DRS
    Energy Convers Manag; 2020 Oct; 222():113232. PubMed ID: 32834299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy, Exergy, Exergoeconomic and Exergoenvironmental Impact Analyses and Optimization of Various Geothermal Power Cycle Configurations.
    Shamoushaki M; Aliehyaei M; Rosen MA
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Economic and environmental impact assessments of a newly designed energy system for marine applications.
    Seyam S; Dincer I; Agelin-Chaab M
    Chemosphere; 2023 Sep; 335():139041. PubMed ID: 37271466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion.
    Petrakopoulou F; Tsatsaronis G; Morosuk T
    Environ Sci Technol; 2012 Mar; 46(5):3001-7. PubMed ID: 22239071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Power Generation Through Solar-Driven Integration of Brayton and Transcritical CO
    Khan Y; Raman R; Said Z; Caliskan H; Hong H
    Glob Chall; 2024 Feb; 8(2):2300223. PubMed ID: 38529414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Exergy and Pinch Analysis for the Operating Mode Optimization of a Steam Turbine Cogeneration Plant in Wonji-Shoa, Ethiopia.
    Sharew SS; Di Pretoro A; Yimam A; Negny S; Montastruc L
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of exergy and exergy economic evaluation of different geothermal cogeneration systems for optimal waste energy recovery.
    Guo Q; Khanmohammadi S
    Chemosphere; 2023 Oct; 339():139586. PubMed ID: 37516323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of cane sugar production: The environmental contribution to human health, climate change, ecosystem quality and resources in México.
    Meza-Palacios R; Aguilar-Lasserre AA; Morales-Mendoza LF; Pérez-Gallardo JR; Rico-Contreras JO; Avarado-Lassman A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(7):668-678. PubMed ID: 30810472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced exergoenvironmental and thermo-sustainability evaluation of cement plant, splitting the environmental impact into endogenous and exogenous parts: a case study.
    Odeh E; Ikpe I; Abam F
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96441-96461. PubMed ID: 37572260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam.
    Brunerová A; Roubík H; Brožek M; Van Dung D; Phung LD; Hasanudin U; Iryani DA; Herák D
    Waste Manag Res; 2020 Nov; 38(11):1239-1250. PubMed ID: 32686610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil.
    Lombardi L; Mendecka B; Carnevale E
    J Environ Manage; 2018 Jun; 216():235-245. PubMed ID: 28521956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exergetic sustainability analysis of industrial furnace: a case study.
    Chowdhury H; Chowdhury T; Hossain N; Chowdhury P; Salam B; Sait SM; Mahlia TMI
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12881-12888. PubMed ID: 33094462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic review on tannery sludge to energy route: Current practices, impacts, strategies, and future directions.
    Moktadir MA; Ren J; Zhou J
    Sci Total Environ; 2023 Nov; 901():166244. PubMed ID: 37597567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.
    Sales A; Lima SA
    Waste Manag; 2010 Jun; 30(6):1114-22. PubMed ID: 20163947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost and environmental analysis and optimization of a new and green three-level waste heat recovery-based cogeneration cycle: A comparative study.
    Nikafshan Rad H; Ghasemi A; Marefati M
    Heliyon; 2024 Apr; 10(7):e29087. PubMed ID: 38601582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy and Exergy Analyses of a Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Cycle Power Plant with Liquefied Natural Gas as Heat Sink.
    Ahmadi MH; Sadaghiani MS; Pourfayaz F; Ghazvini M; Mahian O; Mehrpooya M; Wongwises S
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exergy-Based Multi-Objective Optimization of an Organic Rankine Cycle with a Zeotropic Mixture.
    Fergani Z; Morosuk T; Touil D
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources.
    Oyekale J; Emagbetere E
    Heliyon; 2022 Jul; 8(7):e09833. PubMed ID: 35815127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector.
    Tashtoush B; Morosuk T; Chudasama J
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.