These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32834582)

  • 1. The first 100 days: Modeling the evolution of the COVID-19 pandemic.
    Kaxiras E; Neofotistos G; Angelaki E
    Chaos Solitons Fractals; 2020 Sep; 138():110114. PubMed ID: 32834582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting the Long-Term Trends of Coronavirus Disease 2019 (COVID-19) Epidemic Using the Susceptible-Infectious-Recovered (SIR) Model.
    Kartono A; Karimah SV; Wahyudi ST; Setiawan AA; Sofian I
    Infect Dis Rep; 2021 Jul; 13(3):668-684. PubMed ID: 34449629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What Can We Estimate From Fatality and Infectious Case Data Using the Susceptible-Infected-Removed (SIR) Model? A Case Study of Covid-19 Pandemic.
    Ahmetolan S; Bilge AH; Demirci A; Peker-Dobie A; Ergonul O
    Front Med (Lausanne); 2020; 7():556366. PubMed ID: 33015109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The discrete-time Kermack-McKendrick model: A versatile and computationally attractive framework for modeling epidemics.
    Diekmann O; Othmer HG; Planqué R; Bootsma MCJ
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of the COVID-19 pandemic using simple epidemiological models.
    Enrique Amaro J; Dudouet J; Nicolás Orce J
    Appl Math Model; 2021 Feb; 90():995-1008. PubMed ID: 33110288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Generalized Mechanistic Model for Assessing and Forecasting the Spread of the COVID-19 Pandemic.
    Friji H; Hamadi R; Ghazzai H; Besbes H; Massoud Y
    IEEE Access; 2021; 9():13266-13285. PubMed ID: 34976570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A time-since-infection model for populations with two pathogens.
    Pfab F; Nisbet RM; Briggs CJ
    Theor Popul Biol; 2022 Apr; 144():1-12. PubMed ID: 35051523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ziegler and Nichols meet Kermack and McKendrick: Parsimony in dynamic models for epidemiology.
    Nikolaou M
    Comput Chem Eng; 2022 Jan; 157():107615. PubMed ID: 34961800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age Dependent Epidemic Modeling of COVID-19 Outbreak in Kuwait, France, and Cameroon.
    Oshinubi K; Buhamra SS; Al-Kandari NM; Waku J; Rachdi M; Demongeot J
    Healthcare (Basel); 2022 Mar; 10(3):. PubMed ID: 35326960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic.
    Cooper I; Mondal A; Antonopoulos CG
    Chaos Solitons Fractals; 2020 Oct; 139():110298. PubMed ID: 32982084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-continuous and time-discrete SIR models revisited: theory and applications.
    Wacker B; Schlüter J
    Adv Differ Equ; 2020; 2020(1):556. PubMed ID: 33042201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caputo SIR model for COVID-19 under optimized fractional order.
    Alshomrani AS; Ullah MZ; Baleanu D
    Adv Differ Equ; 2021; 2021(1):185. PubMed ID: 33777127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term prediction of the sporadic COVID-19 epidemics induced by
    Pei L; Hu Y
    Eur Phys J Spec Top; 2022; 231(18-20):3649-3662. PubMed ID: 35813987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SIR model assumption for the spread of COVID-19 in different communities.
    Cooper I; Mondal A; Antonopoulos CG
    Chaos Solitons Fractals; 2020 Oct; 139():110057. PubMed ID: 32834610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical Parameters of the COVID-19 Epidemic in Brazil and Evaluation of the Impact of Different Public Health Measures.
    Cotta RM; Naveira-Cotta CP; Magal P
    Biology (Basel); 2020 Aug; 9(8):. PubMed ID: 32806613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On a Coupled Time-Dependent SIR Models Fitting with New York and New-Jersey States COVID-19 Data.
    Ambrosio B; Aziz-Alaoui MA
    Biology (Basel); 2020 Jun; 9(6):. PubMed ID: 32599867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples.
    Kevrekidis PG; Cuevas-Maraver J; Drossinos Y; Rapti Z; Kevrekidis GA
    Phys Rev E; 2021 Aug; 104(2-1):024412. PubMed ID: 34525669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the evolution of the COVID-19 epidemic with the A-SIR model: Lombardy, Italy and São Paulo state, Brazil.
    Neves AGM; Guerrero G
    Physica D; 2020 Dec; 413():132693. PubMed ID: 32834253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.