These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32834685)

  • 1. Estimation of left behind subway passengers through archived data and video image processing.
    Sipetas C; Keklikoglou A; Gonzales EJ
    Transp Res Part C Emerg Technol; 2020 Sep; 118():102727. PubMed ID: 32834685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factor's affecting safe emergency evacuation of subways in Iran: findings of a qualitative study.
    Nouri F; Khorasani-Zavareh D; Mohammadi R
    J Inj Violence Res; 2020 Apr; 12(2):. PubMed ID: 32319428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of COVID-19 on Waiting Passenger Distribution on a Bus Rapid Transit Station Platform in Brisbane, Australia.
    Jayatilake S; Bunker JM
    Transp Res Rec; 2023 Apr; 2677(4):28-38. PubMed ID: 37153181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approach for study on subway passenger flow.
    Park Y; Choi Y; Kim K; Yoo JK
    Sci Rep; 2022 Feb; 12(1):2754. PubMed ID: 35177774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger-Train Matching Probability.
    Su G; Si B; Zhi K; Li H
    Entropy (Basel); 2022 Jul; 24(8):. PubMed ID: 35893006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Investigation of Dynamic Responses and Head Injuries of Standing Subway Passengers during Collisions.
    Peng Y; Xu T; Hou L; Fan C; Zhou W
    Appl Bionics Biomech; 2018; 2018():1096056. PubMed ID: 30245740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Number of Passengers in a Bus Using Deep Learning.
    Hsu YW; Chen YW; Perng JW
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of limited-stop service based on the degree of unbalance of passenger demand.
    Zhang H; Zhao S; Liu H; Liang S
    PLoS One; 2018; 13(3):e0193855. PubMed ID: 29505585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China.
    Feng Y; Mu C; Zhai J; Li J; Zou T
    J Hazard Mater; 2010 Nov; 183(1-3):574-82. PubMed ID: 20692096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting PM
    Park S; Kim M; Kim M; Namgung HG; Kim KT; Cho KH; Kwon SB
    J Hazard Mater; 2018 Jan; 341():75-82. PubMed ID: 28768223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Method for Predicting Traffic Congestion during Peak Hours in the Subway System of Shenzhen.
    Luo Z; Zhang Y; Li L; He B; Li C; Zhu H; Wang W; Ying S; Xi Y
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting, Tracking and Counting People Getting On/Off a Metropolitan Train Using a Standard Video Camera.
    Velastin SA; Fernández R; Espinosa JE; Bay A
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol advertising on Boston's Massachusetts Bay Transportation Authority transit system: an assessment of youths' and adults' exposure.
    Nyborn JA; Wukitsch K; Nhean S; Siegel M
    Am J Public Health; 2009 Nov; 99 Suppl 3(Suppl 3):S644-8. PubMed ID: 19890170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on strategies for alighting and boarding in subway stations.
    Sun L; Yuan G; Yao L; Cui L; Kong D
    Physica A; 2021 Dec; 583():126302. PubMed ID: 34545267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Passenger Encumbrance and Mobility Aid Use on Dwell Time Variability in Low-floor Transit Vehicles.
    Kostyniuk LP; D'Souza C
    Transp Res Part A Policy Pract; 2020 Feb; 132():872-881. PubMed ID: 33762799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach.
    Cong C; Li X; Yang S; Zhang Q; Lu L; Shi Y
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Route choice estimation in rail transit systems using smart card data: handling vehicle schedule and walking time uncertainties.
    Tiam-Lee TJ; Henriques R
    Eur Transp Res Rev; 2022; 14(1):31. PubMed ID: 38625245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-space analysis to evaluate cell-based quality of service in bus rapid transit station platforms through passenger-specific area.
    Jayatilake S; Bunker JM; Bhaskar A; Miska M
    Public Transp; 2021; 13(2):395-427. PubMed ID: 38624534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to airborne particulate matter in the subway system.
    Martins V; Moreno T; Minguillón MC; Amato F; de Miguel E; Capdevila M; Querol X
    Sci Total Environ; 2015 Apr; 511():711-22. PubMed ID: 25616190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passenger flow prediction in bus transportation system using deep learning.
    Nagaraj N; Gururaj HL; Swathi BH; Hu YC
    Multimed Tools Appl; 2022; 81(9):12519-12542. PubMed ID: 35221777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.