These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32834730)

  • 1. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission.
    Uk Lee B; Yermakov M; Grinshpun SA
    Atmos Environ (1994); 2004 Sep; 38(29):4815-4823. PubMed ID: 32834730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
    Grinshpun SA; Mainelis G; Trunov M; Adhikari A; Reponen T; Willeke K
    Indoor Air; 2005 Aug; 15(4):235-45. PubMed ID: 15982270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unipolar ion emission enhances respiratory protection against fine and ultrafine particles.
    Uk Lee B; Yermakov M; Grinshpun SA
    J Aerosol Sci; 2004 Nov; 35(11):1359-1368. PubMed ID: 32287371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999-2000.
    Wallace L; Howard-Reed C
    J Air Waste Manag Assoc; 2002 Jul; 52(7):828-44. PubMed ID: 12139348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.
    Huang R; Agranovski I; Pyankov O; Grinshpun S
    Indoor Air; 2008 Apr; 18(2):106-12. PubMed ID: 18333990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of an ion generator on indoor air quality in a residential room.
    Waring MS; Siegel JA
    Indoor Air; 2011 Aug; 21(4):267-76. PubMed ID: 21118308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effectiveness of stand alone air cleaners for shelter-in-place.
    Ward M; Siegel JA; Corsi RL
    Indoor Air; 2005 Apr; 15(2):127-34. PubMed ID: 15737155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.
    Alshawa A; Russell AR; Nizkorodov SA
    Environ Sci Technol; 2007 Apr; 41(7):2498-504. PubMed ID: 17438806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charged particles and cluster ions produced during cooking activities.
    Stabile L; Jayaratne ER; Buonanno G; Morawska L
    Sci Total Environ; 2014 Nov; 497-498():516-526. PubMed ID: 25155892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber.
    Afshari A; Matson U; Ekberg LE
    Indoor Air; 2005 Apr; 15(2):141-50. PubMed ID: 15737157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of cooking-generated PM
    Kang K; Kim H; Kim DD; Lee YG; Kim T
    Sci Total Environ; 2019 Jun; 668():56-66. PubMed ID: 30852226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How efficiently can HEPA purifiers remove priority fine and ultrafine particles from indoor air?
    Lowther SD; Deng W; Fang Z; Booker D; Whyatt DJ; Wild O; Wang X; Jones KC
    Environ Int; 2020 Nov; 144():106001. PubMed ID: 32739515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI).
    Kero I; Naess MK; Tranell G
    J Occup Environ Hyg; 2015; 12(1):37-44. PubMed ID: 25380385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of Coagulation, Deposition, and Ventilation to the Removal of Airborne Nanoparticles in Indoor Environments.
    Jeong SG; Wallace L; Rim D
    Environ Sci Technol; 2021 Jul; 55(14):9730-9739. PubMed ID: 34213881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.
    Grinshpun SA; Adhikari A; Honda T; Kim KY; Toivola M; Rao KS; Reponen T
    Environ Sci Technol; 2007 Jan; 41(2):606-12. PubMed ID: 17310729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-Resolved Source Emission Rates of Indoor Ultrafine Particles Considering Coagulation.
    Rim D; Choi JI; Wallace LA
    Environ Sci Technol; 2016 Sep; 50(18):10031-8. PubMed ID: 27181617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period.
    Mitsakou C; Housiadas C; Eleftheriadis K; Vratolis S; Helmis C; Asimakopoulos D
    Indoor Air; 2007 Apr; 17(2):143-52. PubMed ID: 17391237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of an Air Cleaner Device in Reducing Aerosol Particulate Matter (PM) in Indoor Environments.
    Fermo P; Comite V; Falciola L; Guglielmi V; Miani A
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.