These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32835483)

  • 1. grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
    Samways ML; Bruce Macdonald HE; Essex JW
    J Chem Inf Model; 2020 Oct; 60(10):4436-4441. PubMed ID: 32835483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling grand-canonical Monte Carlo: extending the flexibility of GROMACS through the GromPy python interface module.
    Pool R; Heringa J; Hoefling M; Schulz R; Smith JC; Feenstra KA
    J Comput Chem; 2012 May; 33(12):1207-14. PubMed ID: 22370965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD.
    Barhaghi MS; Crawford B; Schwing G; Hardy DJ; Stone JE; Schwiebert L; Potoff J; Tajkhorshid E
    J Chem Theory Comput; 2022 Aug; 18(8):4983-4994. PubMed ID: 35621307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y; Wych DC; Samways ML; Wall ME; Essex JW; Mobley DL
    J Chem Theory Comput; 2022 Mar; 18(3):1359-1381. PubMed ID: 35148093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.
    Bergazin TD; Ben-Shalom IY; Lim NM; Gill SC; Gilson MK; Mobley DL
    J Comput Aided Mol Des; 2021 Feb; 35(2):167-177. PubMed ID: 32968887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA; Russell E; Deng Y; Lu C; Harder ED; Abel R; Wang L
    J Chem Theory Comput; 2020 Oct; 16(10):6061-6076. PubMed ID: 32955877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
    Deng J; Cui Q
    J Chem Theory Comput; 2024 Mar; 20(5):1897-1911. PubMed ID: 38417108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
    Ekberg V; Samways ML; Misini Ignjatović M; Essex JW; Ryde U
    ACS Phys Chem Au; 2022 May; 2(3):247-259. PubMed ID: 35637786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
    Melling OJ; Samways ML; Ge Y; Mobley DL; Essex JW
    J Chem Theory Comput; 2023 Feb; 19(3):1050-1062. PubMed ID: 36692215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein-Ligand Binding Poses.
    Lukauskis D; Samways ML; Aureli S; Cossins BP; Taylor RD; Gervasio FL
    J Chem Inf Model; 2022 Dec; 62(23):6209-6216. PubMed ID: 36401553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water Sites, Networks, And Free Energies with Grand Canonical Monte Carlo.
    Ross GA; Bodnarchuk MS; Essex JW
    J Am Chem Soc; 2015 Dec; 137(47):14930-43. PubMed ID: 26509924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating the Water Flooding Approach by Comparing It to Grand Canonical Monte Carlo Simulations.
    Yoon H; Kolev V; Warshel A
    J Phys Chem B; 2017 Oct; 121(40):9358-9365. PubMed ID: 28911225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-inhibitor association thermodynamics: explicit and continuum solvent studies.
    Resat H; Marrone TJ; McCammon JA
    Biophys J; 1997 Feb; 72(2 Pt 1):522-32. PubMed ID: 9017183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grand canonical Monte Carlo simulations of water in protein environments.
    Woo HJ; Dinner AR; Roux B
    J Chem Phys; 2004 Oct; 121(13):6392-400. PubMed ID: 15446937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M; Guarnieri F; Shkurko I; Wiseman J
    J Chem Inf Model; 2006; 46(1):231-42. PubMed ID: 16426059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
    Resat H; Mezei M
    Biophys J; 1996 Sep; 71(3):1179-90. PubMed ID: 8873992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations.
    Soroush Barhaghi M; Torabi K; Nejahi Y; Schwiebert L; Potoff JJ
    J Chem Phys; 2018 Aug; 149(7):072318. PubMed ID: 30134670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grand-canonical molecular dynamics simulations powered by a hybrid 4D nonequilibrium MD/MC method: Implementation in LAMMPS and applications to electrolyte solutions.
    Kim J; Belloni L; Rotenberg B
    J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37819001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.