BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 3283564)

  • 1. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases.
    Davidson HW; Rhodes CJ; Hutton JC
    Nature; 1988 May; 333(6168):93-6. PubMed ID: 3283564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Golgi/granule processing of peptide hormone and neuropeptide precursors: a minireview.
    Steiner DF; Docherty K; Carroll R
    J Cell Biochem; 1984; 24(2):121-30. PubMed ID: 6373800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. Implication of a favored route for prohormone processing.
    Rhodes CJ; Lincoln B; Shoelson SE
    J Biol Chem; 1992 Nov; 267(32):22719-27. PubMed ID: 1429623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proalbumin to albumin conversion by a proinsulin processing endopeptidase of insulin secretory granules.
    Rhodes CJ; Brennan SO; Hutton JC
    J Biol Chem; 1989 Aug; 264(24):14240-5. PubMed ID: 2503514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic conversion of proinsulin into insulin. Identification of a Ca2+-dependent acidic endopeptidase in isolated insulin-secretory granules.
    Davidson HW; Peshavaria M; Hutton JC
    Biochem J; 1987 Sep; 246(2):279-86. PubMed ID: 3318807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The processing of human proinsulin and chicken proalbumin by rat hepatic vesicles suggests a convertase specific for X-Y-Arg-Arg or Arg-X-Y-Arg sequences.
    Brennan SO; Peach RJ
    J Biol Chem; 1991 Nov; 266(32):21504-8. PubMed ID: 1939180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elephantfish proinsulin possesses a monobasic processing site.
    Gieseg MA; Swarbrick PA; Perko L; Powell RJ; Cutfield JF
    Gen Comp Endocrinol; 1997 Nov; 108(2):199-208. PubMed ID: 9356216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted structural alterations in proinsulin during its interactions with prohormone convertases.
    Lipkind G; Steiner DF
    Biochemistry; 1999 Jan; 38(3):890-6. PubMed ID: 9893983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors.
    Veenstra JA
    Arch Insect Biochem Physiol; 2000 Feb; 43(2):49-63. PubMed ID: 10644969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle.
    Orci L; Halban P; Perrelet A; Amherdt M; Ravazzola M; Anderson RG
    J Cell Biol; 1994 Sep; 126(5):1149-56. PubMed ID: 8063854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin secretory granule biogenesis and the proinsulin-processing endopeptidases.
    Hutton JC
    Diabetologia; 1994 Sep; 37 Suppl 2():S48-56. PubMed ID: 7821740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles.
    Orci L; Ravazzola M; Amherdt M; Madsen O; Perrelet A; Vassalli JD; Anderson RG
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2273-81. PubMed ID: 3536964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proinsulin and somatostatin from the islet organ of the southern-hemisphere lamprey Geotria australis.
    Conlon JM; Nielsen PF; Youson JH; Potter IC
    Gen Comp Endocrinol; 1995 Dec; 100(3):413-22. PubMed ID: 8775068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The post-translational processing and intracellular sorting of carboxypeptidase H in the islets of Langerhans.
    Guest PC; Arden SD; Rutherford NG; Hutton JC
    Mol Cell Endocrinol; 1995 Aug; 113(1):99-108. PubMed ID: 8674818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-SNAP functions in insulin exocytosis from mature, but not immature secretory granules in pancreatic beta cells.
    Nakamichi Y; Nagamatsu S
    Biochem Biophys Res Commun; 1999 Jun; 260(1):127-32. PubMed ID: 10381355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition.
    Weiss MA; Frank BH; Khait I; Pekar A; Heiney R; Shoelson SE; Neuringer LJ
    Biochemistry; 1990 Sep; 29(36):8389-401. PubMed ID: 2252901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational processing of anglerfish islet somatostatin precursors.
    Noe BD; Spiess J
    Adv Exp Med Biol; 1985; 188():123-40. PubMed ID: 2863927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition-metal complexes as enzyme-like reagents for protein cleavage: complex cis-[Pt(en)(H2O)2]2+ as a new methionine-specific protease.
    Milović NM; Dutca LM; Kostić NM
    Chemistry; 2003 Oct; 9(20):5097-106. PubMed ID: 14562327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones.
    Hook V; Yasothornsrikul S; Greenbaum D; Medzihradszky KF; Troutner K; Toneff T; Bundey R; Logrinova A; Reinheckel T; Peters C; Bogyo M
    Biol Chem; 2004 Jun; 385(6):473-80. PubMed ID: 15255178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proinsulin processing in the regulated and the constitutive secretory pathway.
    Halban PA
    Diabetologia; 1994 Sep; 37 Suppl 2():S65-72. PubMed ID: 7821742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.