BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32835679)

  • 1. Towards sustainable valorisation of Acacia melanoxylon biomass: Characterization of mature and juvenile plant tissues.
    Chemetova C; Ribeiro H; Fabião A; Gominho J
    Environ Res; 2020 Dec; 191():110090. PubMed ID: 32835679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durability of five native Argentine wood species of the genera Prosopis and Acacia decayed by rot fungi and its relationship with extractive content.
    Pometti CL; Palanti S; Pizzo B; Charpentier JP; Boizot N; Resio C; Saidman BO
    Biodegradation; 2010 Sep; 21(5):753-60. PubMed ID: 20195704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between wood color parameters measured by the CIELab system and extractive and phenol content in Acacia mangium and Vochysia guatemalensis from fast-growth plantations.
    Moya R; Soto Fallas R; Jiménez Bonilla P; Tenorio C
    Molecules; 2012 Mar; 17(4):3639-52. PubMed ID: 22450677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-composting of invasive Acacia longifolia with pine bark for horticultural use.
    Brito LM; Mourão I; Coutinho J; Smith SR
    Environ Technol; 2015; 36(13-16):1632-42. PubMed ID: 25559143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of delta7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species.
    Freire CS; Coelho DS; Santos NM; Silvestre AJ; Pascoal Neto C
    Lipids; 2005 Mar; 40(3):317-22. PubMed ID: 15957259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed bank and growth comparisons of native (
    Goets SA; Kraaij T; Little KM
    PeerJ; 2018; 6():e5466. PubMed ID: 30155363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorisation Potential of Invasive
    da Costa RMF; Bosch M; Simister R; Gomez LD; Canhoto JM; Batista de Carvalho LAE
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296599
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of Acacia dealbata Link bark extracts on the growth of Allium cepa L. plants under high salinity conditions.
    Lorenzo P; Souza-Alonso P; Guisande-Collazo A; Freitas H
    J Sci Food Agric; 2019 Jun; 99(8):4072-4081. PubMed ID: 30761550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin from Tree Barks: Chemical Structure and Valorization.
    Neiva DM; Rencoret J; Marques G; Gutiérrez A; Gominho J; Pereira H; Del Río JC
    ChemSusChem; 2020 Sep; 13(17):4537-4547. PubMed ID: 32395900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allelopathic Potential of Aqueous Extract from
    Hussain MI; El-Sheikh MA; Reigosa MJ
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32961867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological, Biochemical, and Molecular Analyses Reveal Dark Heartwood Formation Mechanism in
    Zhang R; Bai X; Chen Z; Chen M; Li X; Zeng B; Hu B
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732191
    [No Abstract]   [Full Text] [Related]  

  • 13. An integrated characterization of Picea abies industrial bark regarding chemical composition, thermal properties and polar extracts activity.
    Neiva DM; Araújo S; Gominho J; Carneiro AC; Pereira H
    PLoS One; 2018; 13(11):e0208270. PubMed ID: 30481221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical scavenging activity and reducing power of Acacia nilotica wood lignin.
    Aadil KR; Barapatre A; Sahu S; Jha H; Tiwary BN
    Int J Biol Macromol; 2014 Jun; 67():220-7. PubMed ID: 24685465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface sediments formation during auto-hydrolysis and its effects on the benzene-alcohol extractive, absorbability and chemical pulping properties of hydrolyzed acacia wood chips.
    Shi H; Zhou M; Li C; Sheng X; Yang Q; Li N; Niu M
    Bioresour Technol; 2019 Oct; 289():121604. PubMed ID: 31200281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative physiological, biochemical, metabolomic, and transcriptomic analyses reveal the formation mechanism of heartwood for Acacia melanoxylon.
    Zhang R; Zhang Z; Yan C; Chen Z; Li X; Zeng B; Hu B
    BMC Plant Biol; 2024 Apr; 24(1):308. PubMed ID: 38644502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in antioxidant activity of extracts of Acacia confusa of different ages.
    Tung YT; Chang ST
    Nat Prod Commun; 2010 Jan; 5(1):73-6. PubMed ID: 20184025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotype-Environment Interaction and Horizontal and Vertical Distributions of Heartwood for
    Zhang R; Zeng B; Chen T; Hu B
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372479
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization and Cytotoxicity Assessment of the Lipophilic Fractions of Different Morphological Parts of
    Oliveira CSD; Moreira P; Resende J; Cruz MT; Pereira CMF; Silva AMS; Santos SAO; Silvestre AJD
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155742
    [No Abstract]   [Full Text] [Related]  

  • 20. Demonstration of long-chain n-alkyl caffeates and delta7-steryl glucosides in the bark of Acacia species by gas chromatography-mass spectrometry.
    Freire CS; Silvestre AJ; Neto CP
    Phytochem Anal; 2007; 18(2):151-6. PubMed ID: 17439016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.