BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32835834)

  • 1. Ochratoxin A induces reprogramming of glucose metabolism by switching energy metabolism from oxidative phosphorylation to glycolysis in human gastric epithelium GES-1 cells in vitro.
    Wang Y; Zhao M; Cui J; Wu X; Li Y; Wu W; Zhang X
    Toxicol Lett; 2020 Oct; 333():232-241. PubMed ID: 32835834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malignant transformation of human gastric epithelium cells via reactive oxygen species production and Wnt/β-catenin pathway activation following 40-week exposure to ochratoxin A.
    Jia X; Cui J; Meng X; Xing L; Shen H; Wang J; Liu J; Wang Y; Lian W; Zhang X
    Cancer Lett; 2016 Mar; 372(1):36-47. PubMed ID: 26721203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annexin A3 may play an important role in ochratoxin-induced malignant transformation of human gastric epithelium cells.
    Wang J; Jia X; Meng X; Li Y; Wu W; Zhang X; Xu H; Cui J
    Toxicol Lett; 2019 Oct; 313():150-158. PubMed ID: 31276768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ochratoxin A-enhanced glycolysis induces inflammatory responses in human gastric epithelium cells through mTOR/HIF-1α signaling pathway.
    Wang Y; Zhao M; Cui J; Lian H; Hao Z; Lou L; Jia X; Zhao W; Shen H; Xing L; Zhang X
    Ecotoxicol Environ Saf; 2024 Jan; 270():115868. PubMed ID: 38142590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells.
    Li Q; Dong Z; Lian W; Cui J; Wang J; Shen H; Liu W; Yang J; Zhang X; Cui H
    Arch Toxicol; 2019 Apr; 93(4):1141-1155. PubMed ID: 30903243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ochratoxin A induces G(2) phase arrest in human gastric epithelium GES-1 cells in vitro.
    Cui J; Xing L; Li Z; Wu S; Wang J; Liu J; Wang J; Yan X; Zhang X
    Toxicol Lett; 2010 Mar; 193(2):152-8. PubMed ID: 20060447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERK and p38 MAPK signaling pathways are involved in ochratoxin A-induced G2 phase arrest in human gastric epithelium cells.
    Wang Y; Liu J; Cui J; Xing L; Wang J; Yan X; Zhang X
    Toxicol Lett; 2012 Mar; 209(2):186-92. PubMed ID: 22230261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative DNA damage is involved in ochratoxin A-induced G2 arrest through ataxia telangiectasia-mutated (ATM) pathways in human gastric epithelium GES-1 cells in vitro.
    Cui J; Liu J; Wu S; Wang Y; Shen H; Xing L; Wang J; Yan X; Zhang X
    Arch Toxicol; 2013 Oct; 87(10):1829-40. PubMed ID: 23515941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ochratoxin A on cytotoxicity and glucose metabolism in human esophageal epithelium Het-1A cells.
    Zhao M; Wang Y; Jia X; Liu W; Zhang X; Cui J
    Toxicon; 2021 Jul; 198():80-92. PubMed ID: 33965433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of Rad51 participates in OTA-induced DNA double-strand breaks in GES-1 cells in vitro.
    Lian H; Cui J; Wang Y; Liu J; Wang J; Shen H; Xing L; Wang J; Yan X; Zhang X
    Toxicol Lett; 2014 Apr; 226(2):214-21. PubMed ID: 24525463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nephrotoxin ochratoxin a impairs resilience of energy homeostasis of human proximal tubule cells.
    Schwerdt G; Kopf M; Gekle M
    Mycotoxin Res; 2023 Nov; 39(4):393-403. PubMed ID: 37466908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoflurane promotes glucose metabolism through up-regulation of
    Guo NL; Zhang JX; Wu JP; Xu YH
    Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 28951521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.
    Hu D; Linders A; Yamak A; Correia C; Kijlstra JD; Garakani A; Xiao L; Milan DJ; van der Meer P; Serra M; Alves PM; Domian IJ
    Circ Res; 2018 Oct; 123(9):1066-1079. PubMed ID: 30355156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose.
    Miwa H; Shikami M; Goto M; Mizuno S; Takahashi M; Tsunekawa-Imai N; Ishikawa T; Mizutani M; Horio T; Gotou M; Yamamoto H; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M
    Oncol Rep; 2013 May; 29(5):2053-7. PubMed ID: 23440281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines.
    Tyszka-Czochara M; Bukowska-Strakova K; Kocemba-Pilarczyk KA; Majka M
    Nutrients; 2018 Jun; 10(7):. PubMed ID: 29958416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,25-dihydroxyvitamin D regulation of glucose metabolism in Harvey-ras transformed MCF10A human breast epithelial cells.
    Zheng W; Tayyari F; Gowda GA; Raftery D; McLamore ES; Shi J; Porterfield DM; Donkin SS; Bequette B; Teegarden D
    J Steroid Biochem Mol Biol; 2013 Nov; 138():81-9. PubMed ID: 23619337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ochratoxin A: Toxicity, oxidative stress and metabolism.
    Tao Y; Xie S; Xu F; Liu A; Wang Y; Chen D; Pan Y; Huang L; Peng D; Wang X; Yuan Z
    Food Chem Toxicol; 2018 Feb; 112():320-331. PubMed ID: 29309824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nephritogenic ochratoxin A interferes with mitochondrial function and pH homeostasis in immortalized human kidney epithelial cells.
    Eder S; Benesic A; Freudinger R; Engert J; Schwerdt G; Drumm K; Gekle M
    Pflugers Arch; 2000 Aug; 440(4):521-9. PubMed ID: 10958336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation.
    Zheng X; Boyer L; Jin M; Mertens J; Kim Y; Ma L; Ma L; Hamm M; Gage FH; Hunter T
    Elife; 2016 Jun; 5():. PubMed ID: 27282387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.