These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32835917)
1. Interception of radionuclides by planophile crops: A simple semi-empirical modelling approach in case of nuclear accident fallout. Cristina A; Samson R; Horemans N; Van Hees M; Wannijn J; Bruggeman M; Sweeck L Environ Pollut; 2020 Nov; 266(Pt 3):115308. PubMed ID: 32835917 [TBL] [Abstract][Full Text] [Related]
2. Interception and retention of wet-deposited radiocaesium and radiostrontium on a ley mixture of grass and clover. Bengtsson SB; Gärdenäs AI; Eriksson J; Vinichuk M; Rosén K Sci Total Environ; 2014 Nov; 497-498():412-419. PubMed ID: 25146910 [TBL] [Abstract][Full Text] [Related]
3. The grain storage of wet-deposited caesium and strontium by spring wheat - A modelling study based on a field experiment. Gärdenäs AI; Berglund SL; Bengtsson SB; Rosén K Sci Total Environ; 2017 Jan; 574():1313-1325. PubMed ID: 27639782 [TBL] [Abstract][Full Text] [Related]
4. Fit-for-purpose modelling of radiocaesium soil-to-plant transfer for nuclear emergencies: a review. Almahayni T; Beresford NA; Crout NMJ; Sweeck L J Environ Radioact; 2019 May; 201():58-66. PubMed ID: 30776579 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of Mass Interception Coefficient Data of Radiostrontium by Leafy Crops Using Global Fallout Tagami K; Uchida S; Ishii N; Zheng J J Agric Food Chem; 2022 Dec; 70(48):15244-15254. PubMed ID: 36412606 [TBL] [Abstract][Full Text] [Related]
6. Weather-dependent change of cesium, strontium, barium and tellurium contamination deposited as aerosols on various cultures. Madoz-Escande C; Santucci P J Environ Radioact; 2005; 84(3):417-39. PubMed ID: 15979215 [TBL] [Abstract][Full Text] [Related]
7. Interception, retention and translocation under greenhouse conditions of radiocaesium and radiostrontium from a simulated accidental source. Vandecasteel CM; Baker S; Förstel H; Muzinsky M; Millan R; Madoz-Escande C; Tormos J; Sauras T; Schulte E; Colle C Sci Total Environ; 2001 Oct; 278(1-3):199-214. PubMed ID: 11669268 [TBL] [Abstract][Full Text] [Related]
8. Cesium-134 and strontium-85 in strawberry plants following wet aerial deposition. Carini F; Brambilla M; Mitchell N; Ould-Dada Z J Environ Qual; 2003; 32(6):2254-64. PubMed ID: 14674549 [TBL] [Abstract][Full Text] [Related]
9. Temporal dynamics of Li P; Gong Y; Komatsuzaki M Sci Total Environ; 2019 Dec; 697():134060. PubMed ID: 31487588 [TBL] [Abstract][Full Text] [Related]
10. Modelling the effective dose to a population from fallout after a nuclear power plant accident-A scenario-based study with mitigating actions. Isaksson M; Tondel M; Wålinder R; Rääf C PLoS One; 2019; 14(4):e0215081. PubMed ID: 30964917 [TBL] [Abstract][Full Text] [Related]
11. Translocation studies of 137Cs and 90Sr in bean plants (Phaseolus vulgaris): simulation of fallout. Macacini JF; De Nadai Fernandes EA; Taddei MH Environ Pollut; 2002; 120(1):151-5. PubMed ID: 12199462 [TBL] [Abstract][Full Text] [Related]
12. Dry deposition of gaseous radioiodine and particulate radiocaesium onto leafy vegetables. Tschiersch J; Shinonaga T; Heuberger H Sci Total Environ; 2009 Oct; 407(21):5685-93. PubMed ID: 19640563 [TBL] [Abstract][Full Text] [Related]
13. Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident. Nishikiori T; Watanabe M; Koshikawa MK; Takamatsu T; Ishii Y; Ito S; Takenaka A; Watanabe K; Hayashi S Sci Total Environ; 2015 Jan; 502():611-6. PubMed ID: 25302448 [TBL] [Abstract][Full Text] [Related]
14. Foliar contamination of Phaseolus vulgaris with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: influence of plant development stage upon contamination and rain. Madoz-Escande C; Henner P; Bonhomme T J Environ Radioact; 2004; 73(1):49-71. PubMed ID: 15001295 [TBL] [Abstract][Full Text] [Related]
15. Pathway: a dynamic food-chain model to predict radionuclide ingestion after fallout deposition. Whicker FW; Kirchner TB Health Phys; 1987 Jun; 52(6):717-37. PubMed ID: 3583737 [TBL] [Abstract][Full Text] [Related]
16. Effect of the counter anion of cesium on foliar uptake and translocation. Hasegawa H; Tsukada H; Kawabata H; Chikuchi Y; Takaku Y; Hisamatsu S J Environ Radioact; 2009 Jan; 100(1):54-7. PubMed ID: 19042062 [TBL] [Abstract][Full Text] [Related]
17. Foliar interception of radionuclides in dry conditions: a meta-analysis using a Bayesian modeling approach. Sy MM; Ancelet S; Henner P; Hurtevent P; Simon-Cornu M J Environ Radioact; 2015 Sep; 147():63-75. PubMed ID: 26043277 [TBL] [Abstract][Full Text] [Related]
18. Interception of dry and wet deposited radionuclides by vegetation. Pröhl G J Environ Radioact; 2009 Sep; 100(9):675-82. PubMed ID: 19027204 [TBL] [Abstract][Full Text] [Related]
19. [Present-day 90Sr and 137Cs contamination levels of soil and agricultural products in the East-Urals Radioactive Trace area]. Kazachenok NN; Popova IIa; Kostiuchenko VA; Mel'nikov VS; Usol'tsev DV Radiats Biol Radioecol; 2009; 49(3):324-9. PubMed ID: 19637741 [TBL] [Abstract][Full Text] [Related]
20. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations. Goor F; Thiry Y Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]