These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 32835980)
21. Valorization of Waste Watermelon Rinds as a Bio-adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Solutions. Shukla S; Khan R; Srivastava MM; Zahmatkesh S Appl Biochem Biotechnol; 2024 May; 196(5):2534-2548. PubMed ID: 37043124 [TBL] [Abstract][Full Text] [Related]
22. Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange. Tao X; Wu Y; Cha L Environ Sci Pollut Res Int; 2019 Jul; 26(19):19828-19842. PubMed ID: 31090012 [TBL] [Abstract][Full Text] [Related]
23. Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. Molavi H; Neshastehgar M; Shojaei A; Ghashghaeinejad H Chemosphere; 2020 May; 247():125882. PubMed ID: 32069713 [TBL] [Abstract][Full Text] [Related]
24. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye. Geethakarthi A; Phanikumar BR Environ Sci Pollut Res Int; 2012 Mar; 19(3):656-65. PubMed ID: 21909969 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and characterization of modified activated carbon (MgO/AC) for methylene blue adsorption: optimization, equilibrium isotherm and kinetic studies. Ghalehkhondabi V; Fazlali A; Ketabi K Water Sci Technol; 2021 Apr; 83(7):1548-1565. PubMed ID: 33843742 [TBL] [Abstract][Full Text] [Related]
26. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process. Beakou BH; El Hassani K; Houssaini MA; Belbahloul M; Oukani E; Anouar A Water Sci Technol; 2017 Sep; 76(5-6):1447-1456. PubMed ID: 28953471 [TBL] [Abstract][Full Text] [Related]
27. Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO Liang H; Wang W; Liu H; Deng X; Zhang D; Zou Y; Ruan X Chemosphere; 2023 May; 324():138320. PubMed ID: 36905997 [TBL] [Abstract][Full Text] [Related]
28. Optimized preparation of gangue waste-based geopolymer adsorbent based on improved response surface methodology for Cd(II) removal from wastewater. Dong C; Zhou N; Zhang J; Lai W; Xu J; Chen J; Yu R; Che Y Environ Res; 2023 Mar; 221():115246. PubMed ID: 36657595 [TBL] [Abstract][Full Text] [Related]
29. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Tsai WT; Hsien KJ; Hsu HC; Lin CM; Lin KY; Chiu CH Bioresour Technol; 2008 Apr; 99(6):1623-9. PubMed ID: 17543519 [TBL] [Abstract][Full Text] [Related]
30. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity. Chen T; Wei Y; Yang W; Liu C J Hazard Mater; 2021 Aug; 416():125822. PubMed ID: 34492784 [TBL] [Abstract][Full Text] [Related]
31. Highly Efficient and Sustainable Spent Mushroom Waste Adsorbent Based on Surfactant Modification for the Removal of Toxic Dyes. Alhujaily A; Yu H; Zhang X; Ma F Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29976904 [TBL] [Abstract][Full Text] [Related]
32. A hybrid mesoporous composite of SnO Naggar AH; Seaf-Elnasr TA; Thabet M; El-Monaem EMA; Chong KF; Bakr ZH; Alsohaimi IH; Ali HM; El-Nasser KS; Gomaa H Environ Sci Pollut Res Int; 2023 Oct; 30(49):108247-108262. PubMed ID: 37747604 [TBL] [Abstract][Full Text] [Related]
33. Magnesium oxide nanoparticles modified biochar derived from tea wastes for enhanced adsorption of o-chlorophenol from industrial wastewater. Chu TTH; Tran TMN; Pham MT; Viet NM; Thi HP Chemosphere; 2023 Oct; 337():139342. PubMed ID: 37392798 [TBL] [Abstract][Full Text] [Related]
34. Phosphate adsorption characteristics of CeO Yue Y; Zeng Z; Zhou Y; Hu W Environ Pollut; 2024 Nov; 360():124657. PubMed ID: 39098643 [TBL] [Abstract][Full Text] [Related]
35. Constructing mesoporous biochar derived from waste carton: Improving multi-site adsorption of dye wastewater and investigating mechanism. Wang YS; Huo TR; Wang Y; Bai JW; Huang PP; Li C; Deng SY; Mei H; Qian J; Zhang XC; Ding C; Zhang QY; Wang WK Environ Res; 2024 Feb; 242():117775. PubMed ID: 38029815 [TBL] [Abstract][Full Text] [Related]
36. Enhancing Chromium (VI) removal from synthetic and real tannery effluents by using diatomite-embedded nanopyroxene. Hethnawi A; Khderat W; Hashlamoun K; Kanan A; Nassar NN Chemosphere; 2020 Aug; 252():126523. PubMed ID: 32229355 [TBL] [Abstract][Full Text] [Related]
37. Heterogeneous porous biochar-supported nano NiFe Azzam AB; Tokhy YA; Dars FME; Younes AA Environ Sci Pollut Res Int; 2023 Dec; 30(56):119473-119490. PubMed ID: 37926801 [TBL] [Abstract][Full Text] [Related]
38. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies. Lim CK; Bay HH; Neoh CH; Aris A; Abdul Majid Z; Ibrahim Z Environ Sci Pollut Res Int; 2013 Oct; 20(10):7243-55. PubMed ID: 23653315 [TBL] [Abstract][Full Text] [Related]
39. Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: Adsorption equilibrium and kinetics. Liu Z; Zhang F; Liu T; Peng N; Gai C J Environ Manage; 2016 Nov; 182():446-454. PubMed ID: 27526082 [TBL] [Abstract][Full Text] [Related]
40. Adsorption of Cu(2+) and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes. Hou XX; Deng QF; Ren TZ; Yuan ZY Environ Sci Pollut Res Int; 2013 Dec; 20(12):8521-34. PubMed ID: 23666685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]