These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32835990)

  • 61. Effects of co-pyrolysis of rice husk and sewage sludge on the bioavailability and environmental risks of Pb and Cd.
    Yang YQ; Cui MH; Guo JC; Du JJ; Zheng ZY; Liu H
    Environ Technol; 2021 Jun; 42(15):2304-2312. PubMed ID: 31810427
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure.
    Zhang P; Zhang X; Li Y; Han L
    Bioresour Technol; 2020 Apr; 302():122850. PubMed ID: 32007849
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste.
    Chen G; Tian S; Liu B; Hu M; Ma W; Li X
    Waste Manag; 2020 Feb; 103():268-275. PubMed ID: 31911373
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pyrolysis of antibiotic mycelial residue for biochar: Kinetic deconvolution, biochar properties, and heavy metal immobilization.
    Xie S; Wang Y; Ma C; Zhu G; Wang Y; Li C
    J Environ Manage; 2023 Feb; 328():116956. PubMed ID: 36502709
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals.
    Fan Z; Zhou X; Peng Z; Wan S; Gao ZF; Deng S; Tong L; Han W; Chen X
    Chemosphere; 2023 Mar; 317():137929. PubMed ID: 36682641
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.
    Chen T; Yan B
    Waste Manag; 2012 May; 32(5):957-64. PubMed ID: 22221715
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar.
    Gondek K; Mierzwa-Hersztek M; Kopeć M
    J Environ Manage; 2018 Mar; 210():87-95. PubMed ID: 29331853
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils.
    Penido ES; Martins GC; Mendes TBM; Melo LCA; do Rosário Guimarães I; Guilherme LRG
    Ecotoxicol Environ Saf; 2019 May; 172():326-333. PubMed ID: 30721876
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Effects of Mesophilic Anaerobic Digestion and Thermophilic Anaerobic Digestion on the Risk and Stability of Heavy Metals in Sludge].
    Tian ZK; Wang F; Yan Z
    Huan Jing Ke Xue; 2020 Nov; 41(11):5106-5113. PubMed ID: 33124254
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals.
    Zhang H; Gao Z; Liu Y; Ran C; Mao X; Kang Q; Ao W; Fu J; Li J; Liu G; Dai J
    J Hazard Mater; 2018 Aug; 355():128-135. PubMed ID: 29783153
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments.
    Wang Z; Shu X; Zhu H; Xie L; Cheng S; Zhang Y
    Environ Technol; 2020 Apr; 41(11):1347-1357. PubMed ID: 30300096
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of pyrolysis temperature on the bioavailability of heavy metals in rice straw-derived biochar.
    Yang T; Meng J; Jeyakumar P; Cao T; Liu Z; He T; Cao X; Chen W; Wang H
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):2198-2208. PubMed ID: 32875446
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transformation and stabilization of heavy metals during pyrolysis of organic and inorganic-dominated sewage sludges and their mechanisms.
    Cui Z; Xu G; Ormeci B; Liu H; Zhang Z
    Waste Manag; 2022 Aug; 150():57-65. PubMed ID: 35803157
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Insights into the speciation of heavy metals during pyrolysis of industrial sludge.
    W D CU; Veksha A; Giannis A; Liang YN; Lisak G; Hu X; Lim TT
    Sci Total Environ; 2019 Nov; 691():232-242. PubMed ID: 31323569
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste.
    Li J; Yu G; Pan L; Li C; You F; Wang Y
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22806-22817. PubMed ID: 32319068
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar.
    Li J; Yu G; Xie S; Pan L; Li C; You F; Wang Y
    Sci Total Environ; 2018 Jul; 628-629():131-140. PubMed ID: 29428855
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Research on the variations of organics and heavy metals in municipal sludge with additive acetic acid and modified phosphogypsum.
    Dai Q; Ma L; Ren N; Ning P; Guo Z; Xie L
    Water Res; 2019 May; 155():42-55. PubMed ID: 30831423
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Changes in Heavy Metal Speciation and Release Behavior Before and After Sludge Composting Under a Phosphate-rich Atmosphere].
    Li Y; Fang W; Qi GX; Wei YH; Liu JG; Li RD
    Huan Jing Ke Xue; 2018 Jun; 39(6):2786-2793. PubMed ID: 29965636
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.
    Devi P; Saroha AK
    Bioresour Technol; 2014 Jun; 162():308-15. PubMed ID: 24762760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.