These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32836120)

  • 1. Site conditions interact with litter quality to affect home-field advantage and rhizosphere effect of litter decomposition in a subtropical wetland ecosystem.
    Meng Y; Hui D; Huangfu C
    Sci Total Environ; 2020 Dec; 749():141442. PubMed ID: 32836120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and indirect pathways of land management effects on wetland plant litter decomposition.
    Guo Y; Boughton EH; Liao HL; Sonnier G; Qiu J
    Sci Total Environ; 2023 Jan; 854():158789. PubMed ID: 36122731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional breadth and home-field advantage generate functional differences among soil microbial decomposers.
    Fanin N; Fromin N; Bertrand I
    Ecology; 2016 Apr; 97(4):1023-37. PubMed ID: 27220218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of litter quality and living plants on the home-field advantage of aquatic macrophyte decomposition in a eutrophic urban lake, China.
    Luai VB; Ding S; Wang D
    Sci Total Environ; 2019 Feb; 650(Pt 1):1529-1536. PubMed ID: 30308838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A traits-based test of the home-field advantage in mixed-species tree litter decomposition.
    Jewell MD; Shipley B; Paquette A; Messier C; Reich PB
    Ann Bot; 2015 Oct; 116(5):781-8. PubMed ID: 26162398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Home-field advantage of litter decomposition: from the phyllosphere to the soil.
    Fanin N; Lin D; Freschet GT; Keiser AD; Augusto L; Wardle DA; Veen GFC
    New Phytol; 2021 Aug; 231(4):1353-1358. PubMed ID: 34008201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pond-bottom decomposition of leaf litters canopied by free-floating vegetation.
    Zhang YL; Li HB; Xu L; Pan X; Li WB; Liu J; Jiang YP; Song YB; Dong M
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8248-8256. PubMed ID: 30701469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of microplastics on litter decomposition in wetland soil.
    Ren Y; Qi Y; Wang X; Duan X; Ye X
    Environ Pollut; 2024 Feb; 343():123145. PubMed ID: 38097161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis.
    Zhang P; Li B; Wu J; Hu S
    Ecol Lett; 2019 Jan; 22(1):200-210. PubMed ID: 30460738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.
    Zhang W; Chao L; Yang Q; Wang Q; Fang Y; Wang S
    Ecology; 2016 Oct; 97(10):2834-2843. PubMed ID: 27859104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands.
    Seidelmann KN; Scherer-Lorenzen M; Niklaus PA
    PLoS One; 2016; 11(8):e0160569. PubMed ID: 27490180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Root Activities of Re-Vegetated Plant Species Regulate Soil Nutrients and Bacterial Diversity in the Riparian Zone of the Three Gorges Reservoir].
    Li LJ; Li CX; Chen CH; Yang ZH; Chen XM
    Huan Jing Ke Xue; 2020 Jun; 41(6):2898-2907. PubMed ID: 32608807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.
    Suseela V; Tharayil N
    Glob Chang Biol; 2018 Apr; 24(4):1428-1451. PubMed ID: 28986956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.
    Zhang L; Wang H; Zou J; Rogers WE; Siemann E
    PLoS One; 2014; 9(3):e92301. PubMed ID: 24647312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Home-field advantage in litter decomposition: A critical review from a microbial perspective.
    Ma A; Liu H; Song C; Tian E; Wang X
    J Basic Microbiol; 2023 Jul; 63(7):709-721. PubMed ID: 36978226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams.
    Fenoy E; Casas JJ; Díaz-López M; Rubio J; Guil-Guerrero JL; Moyano-López FJ
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27515735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback interactions between needle litter decomposition and rhizosphere activity.
    Subke JA; Hahn V; Battipaglia G; Linder S; Buchmann N; Cotrufo MF
    Oecologia; 2004 May; 139(4):551-9. PubMed ID: 15042460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil microbial identity explains home-field advantage for litter decomposition.
    Shigyo N; Umeki K; Hirao T
    New Phytol; 2024 Sep; 243(6):2146-2156. PubMed ID: 38736202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of simulated wetland water change on the decomposition and nitrogen dynamics of Calamagrostis angustifolia litter].
    Sun ZG; Liu JS; Yu JB; Qin SJ
    Huan Jing Ke Xue; 2008 Aug; 29(8):2081-93. PubMed ID: 18839554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.