BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32836707)

  • 1. An electrochemical label-free DNA impedimetric sensor with AuNP-modified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA.
    Yeter EÇ; Şahin S; Caglayan MO; Üstündağ Z
    Chem Zvesti; 2021; 75(1):77-87. PubMed ID: 32836707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-on impedimetric electrochemical DNA sensor using dithiothreitol modified gold nanoparticle tag for highly sensitive DNA detection.
    Wang C; Yuan X; Liu X; Gao Q; Qi H; Zhang C
    Anal Chim Acta; 2013 Oct; 799():36-43. PubMed ID: 24091372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes.
    Khater M; de la Escosura-Muñiz A; Quesada-González D; Merkoçi A
    Anal Chim Acta; 2019 Jan; 1046():123-131. PubMed ID: 30482289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical DNA Biosensor Based on Immobilization of a Non-Modified ssDNA Using Phosphoramidate-Bonding Strategy and Pencil Graphite Electrode Modified with AuNPs/CB and Self-Assembled Cysteamine Monolayer.
    Moustakim H; Mohammadi H; Amine A
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode.
    Benvidi A; Firouzabadi AD; Moshtaghiun SM; Mazloum-Ardakani M; Tezerjani MD
    Anal Biochem; 2015 Sep; 484():24-30. PubMed ID: 25988596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free electrochemical impedimetric DNA biosensor for genetically modified soybean detection based on gold carbon dots.
    Gao H; Cui D; Zhai S; Yang Y; Wu Y; Yan X; Wu G
    Mikrochim Acta; 2022 May; 189(6):216. PubMed ID: 35536374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode.
    Zarei SS; Soleimanian-Zad S; Ensafi AA
    Mikrochim Acta; 2018 Nov; 185(12):538. PubMed ID: 30413894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra.
    Hashemi P; Afkhami A; Bagheri H; Amidi S; Madrakian T
    Anal Chim Acta; 2017 Sep; 984():185-192. PubMed ID: 28843562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G.
    Lin D; Pillai RG; Lee WE; Jemere AB
    Mikrochim Acta; 2019 Feb; 186(3):169. PubMed ID: 30741345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of impedimetric sensor based on metallic nanoparticle for the determination of mesna anticancer drug.
    Mehrban M; Madrakian T; Afkhami A; Jalal NR
    Sci Rep; 2023 Jul; 13(1):11381. PubMed ID: 37452101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry.
    Wu NY; Gao W; He XL; Chang Z; Xu MT
    Biosens Bioelectron; 2013 Jan; 39(1):210-4. PubMed ID: 22884003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel label-free solid-state electrochemiluminescence sensor based on the resonance energy transfer from Ru(bpy)
    Huang B; Yao C; Zhang Y; Lu X
    Talanta; 2020 Oct; 218():121126. PubMed ID: 32797883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reagentless Affimer- and antibody-based impedimetric biosensors for CEA-detection using a novel non-conducting polymer.
    Shamsuddin SH; Gibson TD; Tomlinson DC; McPherson MJ; Jayne DG; Millner PA
    Biosens Bioelectron; 2021 Apr; 178():113013. PubMed ID: 33508539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nucleic acid dye-enhanced electrochemical biosensor for the label-free detection of Hg
    Liu W; Wang Y; Sheng F; Wan B; Tang G; Xu S
    Anal Methods; 2022 Sep; 14(35):3451-3457. PubMed ID: 36000503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study.
    Bonanni A; Pumera M; Miyahara Y
    Phys Chem Chem Phys; 2011 Mar; 13(11):4980-6. PubMed ID: 21258669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical biosensor based on topological insulator Bi
    Xiong X; Zhu P; Li S; Jiang Y; Ma Y; Shi Q; Zhang X; Shu X; Wang Z; Sun L; Han J
    Mikrochim Acta; 2022 Jul; 189(8):285. PubMed ID: 35851426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitive electrochemiluminescence DNA biosensor based on the signal amplification of ExoIII enzyme-assisted hybridization chain reaction combined with nanoparticle-loaded multiple probes.
    Hai H; Chen C; Chen D; Li P; Shan Y; Li J
    Mikrochim Acta; 2021 Mar; 188(4):125. PubMed ID: 33723966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates.
    Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J
    Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Electrochemical DNA Biosensor for Equine Hindgut Acidosis Detection.
    Davies J; Thomas C; Rizwan M; Gwenin C
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel RNA genosensor based on highly stable gold nanoparticles decorated phosphorene nanohybrid with graphene for highly sensitive and low-cost electrochemical detection of coconut cadang-cadang viroid.
    Wang Y; Wang W; Lu X; Chen T; Wang Y; Wen Y; Hu J; Song J; Wang X
    Mikrochim Acta; 2023 Dec; 191(1):52. PubMed ID: 38147136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.