BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3283704)

  • 1. Structure and expression of the PHO80 gene of Saccharomyces cerevisiae.
    Madden SL; Creasy CL; Srinivas V; Fawcett W; Bergman LW
    Nucleic Acids Res; 1988 Mar; 16(6):2625-37. PubMed ID: 3283704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins.
    Gilliquet V; Legrain M; Berben G; Hilger F
    Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae.
    Toh-e A; Shimauchi T
    Yeast; 1986 Jun; 2(2):129-39. PubMed ID: 3333302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Yoshida K; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):40-6. PubMed ID: 2671650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mutation occurring in the PHO80 gene suppresses the PHO4c mutations of Saccharomyces cerevisiae.
    Okada H; Toh-e A
    Curr Genet; 1992 Feb; 21(2):95-9. PubMed ID: 1568260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae.
    Nicolson TA; Weisman LS; Payne GS; Wickner WT
    J Cell Biol; 1995 Aug; 130(4):835-45. PubMed ID: 7642701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies on the cloning, expression and function of the yeast PHO 80 gene].
    Zhao Y; Ao S
    Yi Chuan Xue Bao; 1996; 23(2):142-8. PubMed ID: 8695181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae.
    Madden SL; Johnson DL; Bergman LW
    Mol Cell Biol; 1990 Nov; 10(11):5950-7. PubMed ID: 2122235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.
    Hirst K; Fisher F; McAndrew PC; Goding CR
    EMBO J; 1994 Nov; 13(22):5410-20. PubMed ID: 7957107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.
    Creasy CL; Madden SL; Bergman LW
    Nucleic Acids Res; 1993 Apr; 21(8):1975-82. PubMed ID: 8493108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae.
    Lemire JM; Willcocks T; Halvorson HO; Bostian KA
    Mol Cell Biol; 1985 Aug; 5(8):2131-41. PubMed ID: 3915785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulators of the PHO system of Saccharomyces cerevisiae: characterization of PHO80 and PHO85.
    Uesono Y; Tokai M; Tanaka K; Tohe A
    Mol Gen Genet; 1992 Feb; 231(3):426-32. PubMed ID: 1538698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85.
    Uesono Y; Tanaka K; Toh-e A
    Nucleic Acids Res; 1987 Dec; 15(24):10299-309. PubMed ID: 3320965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast Pho80-Pho85 cyclin-CDK complex has multiple substrates.
    Waters NC; Knight JP; Creasy CL; Bergman LW
    Curr Genet; 2004 Jul; 46(1):1-9. PubMed ID: 15057567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of suppressor mutants of a pho84 disruptant in the search for genes involved in intracellular inorganic phosphate sensing in Saccharomyces cerevisiae.
    Sasano Y; Sakata T; Okusaki S; Sugiyama M; Kaneko Y; Harashima S
    Genes Genet Syst; 2018 Dec; 93(5):199-207. PubMed ID: 30449767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae.
    Ogawa N; Oshima Y
    Mol Cell Biol; 1990 May; 10(5):2224-36. PubMed ID: 2183025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae.
    Toh-e A; Inouye S; Oshima Y
    J Bacteriol; 1981 Jan; 145(1):221-32. PubMed ID: 7007314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae.
    Yoshida K; Kuromitsu Z; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):31-9. PubMed ID: 2505053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.