These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 32837245)
1. Pathological lung segmentation based on random forest combined with deep model and multi-scale superpixels. Liu C; Zhao R; Xie W; Pang M Neural Process Lett; 2020; 52(2):1631-1649. PubMed ID: 32837245 [TBL] [Abstract][Full Text] [Related]
2. A fully automatic segmentation algorithm for CT lung images based on random forest. Liu C; Zhao R; Pang M Med Phys; 2020 Feb; 47(2):518-529. PubMed ID: 31788807 [TBL] [Abstract][Full Text] [Related]
3. Extracting Lungs from CT Images via Deep Convolutional Neural Network Based Segmentation and Two-Pass Contour Refinement. Liu C; Pang M J Digit Imaging; 2020 Dec; 33(6):1465-1478. PubMed ID: 33057882 [TBL] [Abstract][Full Text] [Related]
4. A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling. Farag A; Le Lu ; Roth HR; Liu J; Turkbey E; Summers RM IEEE Trans Image Process; 2017 Jan; 26(1):386-399. PubMed ID: 27831881 [TBL] [Abstract][Full Text] [Related]
5. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging. Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987 [TBL] [Abstract][Full Text] [Related]
6. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
7. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685 [TBL] [Abstract][Full Text] [Related]
8. Study on Identification Method of Pulmonary Nodules: Improved Random Walk Pulmonary Parenchyma Segmentation and Fusion Multi-Feature VGG16 Nodule Classification. Zhang Y; Meng L Front Oncol; 2022; 12():822827. PubMed ID: 35371983 [TBL] [Abstract][Full Text] [Related]
9. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Walsh SLF; Calandriello L; Silva M; Sverzellati N Lancet Respir Med; 2018 Nov; 6(11):837-845. PubMed ID: 30232049 [TBL] [Abstract][Full Text] [Related]
10. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Caballo M; Boone JM; Mann R; Sechopoulos I Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025 [TBL] [Abstract][Full Text] [Related]
11. RPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning. Liu J; Wang C; Guo J; Shao J; Xu X; Liu X; Li H; Li W; Yi Z Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):895-904. PubMed ID: 33846890 [TBL] [Abstract][Full Text] [Related]
12. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
13. Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks. Park B; Park H; Lee SM; Seo JB; Kim N J Digit Imaging; 2019 Dec; 32(6):1019-1026. PubMed ID: 31396776 [TBL] [Abstract][Full Text] [Related]
14. Automated vessel segmentation in lung CT and CTA images via deep neural networks. Tan W; Zhou L; Li X; Yang X; Chen Y; Yang J J Xray Sci Technol; 2021; 29(6):1123-1137. PubMed ID: 34421004 [TBL] [Abstract][Full Text] [Related]
15. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Cascio D; Magro R; Fauci F; Iacomi M; Raso G Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972 [TBL] [Abstract][Full Text] [Related]
16. Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study. Polan DF; Brady SL; Kaufman RA Phys Med Biol; 2016 Sep; 61(17):6553-69. PubMed ID: 27530679 [TBL] [Abstract][Full Text] [Related]
17. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
18. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling. Shahedi M; Halicek M; Guo R; Zhang G; Schuster DM; Fei B Med Phys; 2018 Jun; 45(6):2527-2541. PubMed ID: 29611216 [TBL] [Abstract][Full Text] [Related]
19. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion. Ma L; Guo R; Zhang G; Tade F; Schuster DM; Nieh P; Master V; Fei B Proc SPIE Int Soc Opt Eng; 2017 Feb; 10133():. PubMed ID: 30220767 [TBL] [Abstract][Full Text] [Related]
20. Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. da Silva GLF; Diniz PS; Ferreira JL; França JVF; Silva AC; de Paiva AC; de Cavalcanti EAA Med Biol Eng Comput; 2020 Sep; 58(9):1947-1964. PubMed ID: 32566988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]