BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 3283733)

  • 1. Sequence comparisons in the aminoacyl-tRNA synthetases with emphasis on regions of likely homology with sequences in the Rossmann fold in the methionyl and tyrosyl enzymes.
    Walker EJ; Jeffrey PD
    Protein Seq Data Anal; 1988 Feb; 1(3):187-93. PubMed ID: 3283733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases.
    Blow DM; Bhat TN; Metcalfe A; Risler JL; Brunie S; Zelwer C
    J Mol Biol; 1983 Dec; 171(4):571-6. PubMed ID: 6363712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase.
    Webster T; Tsai H; Kula M; Mackie GA; Schimmel P
    Science; 1984 Dec; 226(4680):1315-7. PubMed ID: 6390679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding structural relationships in proteins of unsolved three-dimensional structure.
    Burbaum JJ; Starzyk RM; Schimmel P
    Proteins; 1990; 7(2):99-111. PubMed ID: 2183216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific tRNA recognition in relation to tRNA synthetase contact residues.
    Nair S; Ribas de Pouplana L; Houman F; Avruch A; Shen X; Schimmel P
    J Mol Biol; 1997 May; 269(1):1-9. PubMed ID: 9192996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
    Sun R; Zheng H; Fang Z; Yao W
    Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H; Conley J; Yamao F; Rogers J; Söll D
    Protein Seq Data Anal; 1988; 1(6):479-85. PubMed ID: 2464170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and expression of the Saccharomyces cerevisiae cytoplasmic tryptophanyl-tRNA synthetase gene.
    John TR; Ghosh M; Johnson JD
    Yeast; 1997 Jan; 13(1):37-41. PubMed ID: 9046085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved cysteine and histidine residues in the structures of the tyrosyl and methionyl-tRNA synthetases.
    Barker DG; Winter G
    FEBS Lett; 1982 Aug; 145(2):191-3. PubMed ID: 6751870
    [No Abstract]   [Full Text] [Related]  

  • 12. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A.
    Cusack S; Berthet-Colominas C; Härtlein M; Nassar N; Leberman R
    Nature; 1990 Sep; 347(6290):249-55. PubMed ID: 2205803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The valyl-tRNA synthetase from Bacillus stearothermophilus has considerable sequence homology with the isoleucyl-tRNA synthetase from Escherichia coli.
    Borgford TJ; Brand NJ; Gray TE; Fersht AR
    Biochemistry; 1987 May; 26(9):2480-6. PubMed ID: 3300774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase.
    Cavarelli J; Rees B; Ruff M; Thierry JC; Moras D
    Nature; 1993 Mar; 362(6416):181-4. PubMed ID: 8450889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants.
    Jones MD; Lowe DM; Borgford T; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1887-91. PubMed ID: 3011073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S
    Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.