These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32838)
21. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. Chen W; Graham C; Ciccarelli RB J Ind Microbiol Biotechnol; 1997 Jan; 18(1):43-8. PubMed ID: 9079287 [TBL] [Abstract][Full Text] [Related]
22. pH gradients through colonies of Bacillus cereus and the surrounding agar. Robinson TP; Wimpenny JW; Earnshaw RG J Gen Microbiol; 1991 Dec; 137(12):2885-9. PubMed ID: 1791442 [TBL] [Abstract][Full Text] [Related]
23. Biosynthesis of cyclodextrin glucosyltransferase by the free and immobilized cells of Bacillus cereus NRC7 in batch and continuous cultures. Abdel-Naby MA; El-Refai HA; Abdel-Fattah AF J Appl Microbiol; 2011 Nov; 111(5):1129-37. PubMed ID: 21883731 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent. Kaboré D; Nielsen DS; Sawadogo-Lingani H; Diawara B; Dicko MH; Jakobsen M; Thorsen L Int J Food Microbiol; 2013 Mar; 162(1):114-9. PubMed ID: 23376785 [TBL] [Abstract][Full Text] [Related]
25. Purification and characterization of the vascular permeability factor produced by Bacillus cereus. Shinagawa K; Ueno S; Konuma H; Matsusaka N; Sugii S J Vet Med Sci; 1991 Apr; 53(2):281-6. PubMed ID: 1830799 [TBL] [Abstract][Full Text] [Related]
26. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Tay A; Yang ST Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781 [TBL] [Abstract][Full Text] [Related]
27. The effect of acid adaptation on the susceptibility of Bacillus cereus to the stresses of temperature and H2O2 as well as enterotoxin production. Chen JL; Chiang ML; Chou CC Foodborne Pathog Dis; 2009; 6(1):71-9. PubMed ID: 18991549 [TBL] [Abstract][Full Text] [Related]
28. Improved methods for purification of an enterotoxin produced by Bacillus cereus. Shinagawa K; Sugiyama J; Terada T; Matsusaka N; Sugii S FEMS Microbiol Lett; 1991 May; 64(1):1-5. PubMed ID: 1906824 [TBL] [Abstract][Full Text] [Related]
29. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Zhang HT; Zhan XB; Zheng ZY; Wu JR; English N; Yu XB; Lin CC Appl Microbiol Biotechnol; 2012 Jan; 93(1):367-79. PubMed ID: 21739265 [TBL] [Abstract][Full Text] [Related]
30. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Valappil SP; Misra SK; Boccaccini AR; Keshavarz T; Bucke C; Roy I J Biotechnol; 2007 Nov; 132(3):251-8. PubMed ID: 17532079 [TBL] [Abstract][Full Text] [Related]
31. Alteration of vascular permeability in rabbits by culture filtrates of Bacillus cereus and related species. Glatz BA; Spira WM; Goepfert JM Infect Immun; 1974 Aug; 10(2):299-303. PubMed ID: 4211786 [TBL] [Abstract][Full Text] [Related]
32. Production of L-glutamic acid by a Bacillus sp. Chattopadhyay SP; Banerjee AK Folia Microbiol (Praha); 1978; 23(6):469-80. PubMed ID: 33882 [TBL] [Abstract][Full Text] [Related]
33. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphlyococci in batch and continuous culture. Jarvis AW; Lawrence RC; Pritchard GG J Gen Microbiol; 1975 Jan; 86(1):75-87. PubMed ID: 234506 [TBL] [Abstract][Full Text] [Related]
34. Effect of impeller speed and pH on the production of poly(3-hydroxybutyrate) using Bacillus cereus SPV. Philip S; Sengupta S; Keshavarz T; Roy I Biomacromolecules; 2009 Apr; 10(4):691-9. PubMed ID: 19296657 [TBL] [Abstract][Full Text] [Related]
36. Growth of Bacillus cereus in fermenting tempeh made from various beans and its inhibition by Lactobacillus plantarum. Ashenafi M; Busse M J Appl Bacteriol; 1991 Apr; 70(4):329-33. PubMed ID: 1905283 [TBL] [Abstract][Full Text] [Related]
37. Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. Slock JA; Stahly DP J Bacteriol; 1974 Oct; 120(1):399-406. PubMed ID: 4214355 [TBL] [Abstract][Full Text] [Related]
38. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Guérin A; Dargaignaratz C; Broussolle V; Clavel T; Nguyen-The C Food Microbiol; 2016 Oct; 59():119-23. PubMed ID: 27375252 [TBL] [Abstract][Full Text] [Related]
39. Optimum conditions for ursodeoxycholic acid production from lithocholic acid by Fusarium equiseti M41. Kulprecha S; Ueda T; Nihira T; Yoshida T; Taguchi H Appl Environ Microbiol; 1985 Feb; 49(2):338-44. PubMed ID: 3985610 [TBL] [Abstract][Full Text] [Related]
40. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. Hwang JW; Yang YK; Hwang JK; Pyun YR; Kim YS J Biosci Bioeng; 1999; 88(2):183-8. PubMed ID: 16232595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]