These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32838484)

  • 1. A marginal estimate for the overall treatment effect on a survival outcome within the joint modeling framework.
    van Oudenhoven FM; Swinkels SHN; Ibrahim JG; Rizopoulos D
    Stat Med; 2020 Dec; 39(28):4120-4132. PubMed ID: 32838484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies.
    Ganjali M; Baghfalaki T
    J Biopharm Stat; 2015; 25(5):1077-99. PubMed ID: 25372017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome.
    Tu J; Sun J
    Stat Med; 2023 Feb; 42(3):316-330. PubMed ID: 36443903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regression modeling of longitudinal data with outcome-dependent observation times: extensions and comparative evaluation.
    Tan KS; French B; Troxel AB
    Stat Med; 2014 Nov; 33(27):4770-89. PubMed ID: 25052289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible link functions in a joint hierarchical Gaussian process model.
    Su W; Wang X; Szczesniak RD
    Biometrics; 2021 Jun; 77(2):754-764. PubMed ID: 32413169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A joint marginal-conditional model for multivariate longitudinal data.
    Proudfoot J; Faig W; Natarajan L; Xu R
    Stat Med; 2018 Feb; 37(5):813-828. PubMed ID: 29205414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Model Assessment in Joint Modeling of Longitudinal and Survival Data with Applications to Cancer Clinical Trials.
    Zhang D; Chen MH; Ibrahim JG; Boye ME; Shen W
    J Comput Graph Stat; 2017; 26(1):121-133. PubMed ID: 28239247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Mixed-effect Models for Prostate-specific Antigen Kinetics and Link with Survival in the Context of Metastatic Prostate Cancer: A Comparison by Simulation of Two-stage and Joint Approaches.
    Desmée S; Mentré F; Veyrat-Follet C; Guedj J
    AAPS J; 2015 May; 17(3):691-9. PubMed ID: 25739818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients.
    Song X; Wang CY
    Biometrics; 2008 Jun; 64(2):557-66. PubMed ID: 17725812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using marginal structural joint models to estimate the effect of a time-varying treatment on recurrent events and survival: An application on arrhythmogenic cardiomyopathy.
    Gregorio C; Cappelletto C; Romani S; Stolfo D; Merlo M; Barbati G
    Biom J; 2022 Dec; 64(8):1374-1388. PubMed ID: 36058642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint modeling of survival time and longitudinal outcomes with flexible random effects.
    Choi J; Zeng D; Olshan AF; Cai J
    Lifetime Data Anal; 2018 Jan; 24(1):126-152. PubMed ID: 28856493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models.
    Noma H; Maruo K; Gosho M; Levine SZ; Goldberg Y; Leucht S; Furukawa TA
    BMC Med Res Methodol; 2019 Feb; 19(1):33. PubMed ID: 30764757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint modeling of binary response and survival for clustered data in clinical trials.
    Chen BE; Wang J
    Stat Med; 2020 Feb; 39(3):326-339. PubMed ID: 31777115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness.
    Chen C; Shen B; Zhang L; Xue Y; Wang M
    Biometrics; 2019 Sep; 75(3):950-965. PubMed ID: 31004449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint modeling of longitudinal and survival data with a covariate subject to a limit of detection.
    Sattar A; Sinha SK
    Stat Methods Med Res; 2019 Feb; 28(2):486-502. PubMed ID: 28956504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of mixed models and marginal models with cohort attrition due to death and drop-out.
    Rouanet A; Helmer C; Dartigues JF; Jacqmin-Gadda H
    Stat Methods Med Res; 2019 Feb; 28(2):343-356. PubMed ID: 28784010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data.
    Tang AM; Tang NS
    Stat Med; 2015 Feb; 34(5):824-43. PubMed ID: 25404574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SAS macro for the joint modeling of longitudinal outcomes and multiple competing risk dropouts.
    Wang W; Wang W; Mosley TH; Griswold ME
    Comput Methods Programs Biomed; 2017 Jan; 138():23-30. PubMed ID: 27886712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
    Song X; Davidian M; Tsiatis AA
    Biometrics; 2002 Dec; 58(4):742-53. PubMed ID: 12495128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.