BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32838738)

  • 61. Genetic algorithm learning as a robust approach to RNA editing site prediction.
    Thompson J; Gopal S
    BMC Bioinformatics; 2006 Mar; 7():145. PubMed ID: 16542417
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Computational prediction of RNA editing sites.
    Bundschuh R
    Bioinformatics; 2004 Nov; 20(17):3214-20. PubMed ID: 15231535
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ClustalXeed: a GUI-based grid computation version for high performance and terabyte size multiple sequence alignment.
    Kim T; Joo H
    BMC Bioinformatics; 2010 Sep; 11():467. PubMed ID: 20849574
    [TBL] [Abstract][Full Text] [Related]  

  • 64. HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences.
    Matias Rodrigues JF; von Mering C
    Bioinformatics; 2014 Jan; 30(2):287-8. PubMed ID: 24215029
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Genome-Wide Characterization of RNA Editing in Chicken Embryos Reveals Common Features among Vertebrates.
    Frésard L; Leroux S; Roux PF; Klopp C; Fabre S; Esquerré D; Dehais P; Djari A; Gourichon D; Lagarrigue S; Pitel F
    PLoS One; 2015; 10(5):e0126776. PubMed ID: 26024316
    [TBL] [Abstract][Full Text] [Related]  

  • 66. RNA editome in rhesus macaque shaped by purifying selection.
    Chen JY; Peng Z; Zhang R; Yang XZ; Tan BC; Fang H; Liu CJ; Shi M; Ye ZQ; Zhang YE; Deng M; Zhang X; Li CY
    PLoS Genet; 2014 Apr; 10(4):e1004274. PubMed ID: 24722121
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences.
    Zhu S; Xiang JF; Chen T; Chen LL; Yang L
    BMC Genomics; 2013 Mar; 14():206. PubMed ID: 23537002
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications.
    Licht K; Jantsch MF
    J Cell Biol; 2016 Apr; 213(1):15-22. PubMed ID: 27044895
    [TBL] [Abstract][Full Text] [Related]  

  • 69. RASER: reads aligner for SNPs and editing sites of RNA.
    Ahn J; Xiao X
    Bioinformatics; 2015 Dec; 31(24):3906-13. PubMed ID: 26323713
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of widespread ultra-edited human RNAs.
    Carmi S; Borukhov I; Levanon EY
    PLoS Genet; 2011 Oct; 7(10):e1002317. PubMed ID: 22028664
    [TBL] [Abstract][Full Text] [Related]  

  • 71. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.
    Srivastava A; Sarkar H; Gupta N; Patro R
    Bioinformatics; 2016 Jun; 32(12):i192-i200. PubMed ID: 27307617
    [TBL] [Abstract][Full Text] [Related]  

  • 72. EndoVIPER-seq for Improved Detection of A-to-I Editing Sites in Cellular RNA.
    Knutson SD; Heemstra JM
    Curr Protoc Chem Biol; 2020 Jun; 12(2):e82. PubMed ID: 32469473
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lessons from discovery of true ADAR RNA editing sites in a human cell line.
    Wang F; Cao H; Xia Q; Liu Z; Wang M; Gao F; Xu D; Deng B; Diao Y; Kapranov P
    BMC Biol; 2023 Jul; 21(1):160. PubMed ID: 37468903
    [TBL] [Abstract][Full Text] [Related]  

  • 74. VIRGO: visualization of A-to-I RNA editing sites in genomic sequences.
    Distefano R; Nigita G; Macca V; Laganà A; Giugno R; Pulvirenti A; Ferro A
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S5. PubMed ID: 23815474
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational approaches for detection and quantification of A-to-I RNA-editing.
    Pinto Y; Levanon EY
    Methods; 2019 Mar; 156():25-31. PubMed ID: 30465820
    [TBL] [Abstract][Full Text] [Related]  

  • 76. ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
    Khan H; Mohamadi H; Vandervalk BP; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 May; 34(10):1697-1704. PubMed ID: 29300846
    [TBL] [Abstract][Full Text] [Related]  

  • 77. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Variant analysis pipeline for accurate detection of genomic variants from transcriptome sequencing data.
    Adetunji MO; Lamont SJ; Abasht B; Schmidt CJ
    PLoS One; 2019; 14(9):e0216838. PubMed ID: 31545812
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DARNED: a DAtabase of RNa EDiting in humans.
    Kiran A; Baranov PV
    Bioinformatics; 2010 Jul; 26(14):1772-6. PubMed ID: 20547637
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RNA editing of protein sequences: a rare event in human transcriptomes.
    Kleinman CL; Adoue V; Majewski J
    RNA; 2012 Sep; 18(9):1586-96. PubMed ID: 22832026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.