These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32838937)

  • 1. XerD-dependent integration of a novel filamentous phage Cf2 into the Xanthomonas citri genome.
    Yeh TY
    Virology; 2020 Sep; 548():160-167. PubMed ID: 32838937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae.
    Yeh TY
    Arch Virol; 2017 Feb; 162(2):567-572. PubMed ID: 27743252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae.
    McLeod SM; Waldor MK
    Mol Microbiol; 2004 Nov; 54(4):935-47. PubMed ID: 15522078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmids carrying cloned fragments of RF DNA from the filamentous phage (phi)Lf can be integrated into the host chromosome via site-specific integration and homologous recombination.
    Lin NT; Chang RY; Lee SJ; Tseng YH
    Mol Genet Genomics; 2001 Nov; 266(3):425-35. PubMed ID: 11713672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration.
    Hassan F; Kamruzzaman M; Mekalanos JJ; Faruque SM
    Nature; 2010 Oct; 467(7318):982-5. PubMed ID: 20944629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filamentous phage integration requires the host recombinases XerC and XerD.
    Huber KE; Waldor MK
    Nature; 2002 Jun; 417(6889):656-9. PubMed ID: 12050668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic integration and excision of filamentous phage XacF1 in
    Ahmad AA; Kawabe M; Askora A; Kawasaki T; Fujie M; Yamada T
    FEBS Open Bio; 2017 Nov; 7(11):1715-1721. PubMed ID: 29123980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress on XerCD/dif site-specific recombination].
    Tian DQ; Wang YM; Zheng T
    Yi Chuan; 2012 Aug; 34(8):1003-8. PubMed ID: 22917905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies.
    Das B; Kumari R; Pant A; Sen Gupta S; Saxena S; Mehta O; Nair GB
    J Bacteriol; 2014 Dec; 196(23):4071-80. PubMed ID: 25225263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi.
    Campos J; Martínez E; Suzarte E; Rodríguez BL; Marrero K; Silva Y; Ledón T; del Sol R; Fando R
    J Bacteriol; 2003 Oct; 185(19):5685-96. PubMed ID: 13129939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease.
    Ahmad AA; Askora A; Kawasaki T; Fujie M; Yamada T
    Front Microbiol; 2014; 5():321. PubMed ID: 25071734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The TLCΦ satellite phage harbors a Xer recombination activation factor.
    Midonet C; Miele S; Paly E; Guerois R; Barre FX
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18391-18396. PubMed ID: 31420511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome.
    Midonet C; Das B; Paly E; Barre FX
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):16848-53. PubMed ID: 25385643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smarter than the average phage.
    Blakely GW
    Mol Microbiol; 2004 Nov; 54(4):851-4. PubMed ID: 15522071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome.
    Dai H; Chow TY; Liao HJ; Chen ZY; Chiang KS
    Virology; 1988 Dec; 167(2):613-20. PubMed ID: 3201755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific recombination systems in filamentous phages.
    Askora A; Abdel-Haliem ME; Yamada T
    Mol Genet Genomics; 2012 Jul; 287(7):525-30. PubMed ID: 22661259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination.
    Miele S; Provan JI; Vergne J; Possoz C; Ochsenbein F; Barre FX
    Nucleic Acids Res; 2022 Jun; 50(11):6368-6383. PubMed ID: 35657090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a spontaneously segregating Cf16-v1 lysogen of Xanthomonas campestris pv. citri.
    Dai H; Huang S; Chiang KS
    Intervirology; 1988; 29(4):207-16. PubMed ID: 3182235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and nucleotide sequence of attachment site of the Cflt filamentous phage from Xanthomonas campestris pv. citri.
    Fann JH; Lee MH; Kuo TT
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1989 Aug; 22(3):151-62. PubMed ID: 2605976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential stability of filamentous phage genomes in Xanthomonas campestris pv citri.
    Dai H; Liao HJ; Chiang KS
    Microbios; 1988; 56(228-229):157-67. PubMed ID: 3241573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.