BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 32839306)

  • 21. Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China?
    Li N; Zhang Y; Wang T; Li J; Yang J; Luo M
    J Environ Manage; 2022 Jan; 302(Pt B):114093. PubMed ID: 34781053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Land use change affects water erosion in the Nepal Himalayas.
    Chalise D; Kumar L
    PLoS One; 2020; 15(4):e0231692. PubMed ID: 32294108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901.
    Li P; Chen J; Zhao G; Holden J; Liu B; Chan FKS; Hu J; Wu P; Mu X
    Sci Total Environ; 2022 Jun; 823():153674. PubMed ID: 35124038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do Ecological Restoration Projects Improve Water-Related Ecosystem Services? Evidence from a Study in the Hengduan Mountain Region.
    Yin L; Zhang S; Zhang B
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of potential soil erosion in the Prosecco DOCG area (NE Italy), toward a soil footprint of bottled sparkling wine production in different land-management scenarios.
    Pappalardo SE; Gislimberti L; Ferrarese F; De Marchi M; Mozzi P
    PLoS One; 2019; 14(5):e0210922. PubMed ID: 31042756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the Spatial Distribution and Severity of Soil Erosion in the Global Tropics using Satellite Remote Sensing.
    Vågen TG; Winowiecki LA
    Remote Sens (Basel); 2019 Jul; 11(15):1800. PubMed ID: 33489317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.
    Martin A; Gunter JT; Regens JL
    Environ Sci Pollut Res Int; 2003; 10(4):245-50. PubMed ID: 12943008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geospatial technology for assessment of soil erosion and prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India.
    Sharma N; Kaushal A; Yousuf A; Sood A; Kaur S; Sharda R
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):515-531. PubMed ID: 35900623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of different land use planning scenarios on the amount of total soil losses in the Mikail Stream Micro-Basin.
    Aytop H; Şenol S
    Environ Monit Assess; 2022 Mar; 194(4):321. PubMed ID: 35357587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conservation strategies for effective land management of protected areas using an erosion prediction information system (EPIS).
    Millward AA; Mersey JE
    J Environ Manage; 2001 Apr; 61(4):329-43. PubMed ID: 11383105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil).
    Cunha ERD; Santos CAG; Silva RMD; Panachuki E; Oliveira PTS; Oliveira NS; Falcão KDS
    Sci Total Environ; 2022 Apr; 818():151811. PubMed ID: 34808178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe.
    Jorda-Capdevila D; Gampe D; Huber García V; Ludwig R; Sabater S; Vergoñós L; Acuña V
    Sci Total Environ; 2019 Feb; 651(Pt 1):895-908. PubMed ID: 30266055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating potential impacts of land management practices on soil erosion in the Gilgel Abay watershed, upper Blue Nile basin.
    Gashaw T; Worqlul AW; Dile YT; Addisu S; Bantider A; Zeleke G
    Heliyon; 2020 Aug; 6(8):e04777. PubMed ID: 32904234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios.
    Zhang S; Yang P; Xia J; Wang W; Cai W; Chen N; Hu S; Luo X; Li J; Zhan C
    Sci Total Environ; 2022 Aug; 833():155238. PubMed ID: 35427604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework.
    Elnashar A; Zeng H; Wu B; Fenta AA; Nabil M; Duerler R
    Sci Total Environ; 2021 Nov; 793():148466. PubMed ID: 34175609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrate leaching losses from two Baltic Sea catchments under scenarios of changes in land use, land management and climate.
    Olesen JE; Børgesen CD; Hashemi F; Jabloun M; Bar-Michalczyk D; Wachniew P; Zurek AJ; Bartosova A; Bosshard T; Hansen AL; Refsgaard JC
    Ambio; 2019 Nov; 48(11):1252-1263. PubMed ID: 31542886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.
    SooHoo WM; Wang C; Li H
    J Environ Manage; 2017 Apr; 190():188-196. PubMed ID: 28049088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of global wheat cultivation distribution under climate change and socioeconomic development.
    Guo X; Zhang P; Yue Y
    Sci Total Environ; 2024 Apr; 919():170481. PubMed ID: 38307262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia.
    Rendana M; Idris WMR; Rahim SA; Rahman ZA; Lihan T
    Geosci Lett; 2023; 10(1):1. PubMed ID: 36619610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.