These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32839307)
1. Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition. Donley GJ; Singh PK; Shetty A; Rogers SA Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21945-21952. PubMed ID: 32839307 [TBL] [Abstract][Full Text] [Related]
2. Brittle and ductile yielding in soft materials. Kamani KM; Rogers SA Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401409121. PubMed ID: 38776367 [TBL] [Abstract][Full Text] [Related]
3. Yielding and structural relaxation in soft materials: evaluation of strain-rate frequency superposition data by the stress decomposition method. Hess A; Aksel N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051502. PubMed ID: 22181417 [TBL] [Abstract][Full Text] [Related]
4. Viscoelastic and Deformation Characteristics of Structurally Different Commercial Topical Systems. Dabbaghi M; Namjoshi S; Panchal B; Grice JE; Prakash S; Roberts MS; Mohammed Y Pharmaceutics; 2021 Aug; 13(9):. PubMed ID: 34575425 [TBL] [Abstract][Full Text] [Related]
5. Softening and yielding of soft glassy materials. Dagois-Bohy S; Somfai E; Tighe BP; van Hecke M Soft Matter; 2017 Dec; 13(47):9036-9045. PubMed ID: 29177346 [TBL] [Abstract][Full Text] [Related]
6. Unification of the Rheological Physics of Yield Stress Fluids. Kamani K; Donley GJ; Rogers SA Phys Rev Lett; 2021 May; 126(21):218002. PubMed ID: 34114843 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Dimitriou CJ; McKinley GH Soft Matter; 2014 Sep; 10(35):6619-44. PubMed ID: 25008187 [TBL] [Abstract][Full Text] [Related]
8. Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide. Nair GG; Krishna Prasad S; Bhargavi R; Jayalakshmi V; Shanker G; Yelamaggad CV J Phys Chem B; 2010 Jan; 114(2):697-704. PubMed ID: 20028007 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear viscoelasticity and shear localization at complex fluid interfaces. Erni P; Parker A Langmuir; 2012 May; 28(20):7757-67. PubMed ID: 22563849 [TBL] [Abstract][Full Text] [Related]
10. Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. Varchanis S; Haward SJ; Hopkins CC; Syrakos A; Shen AQ; Dimakopoulos Y; Tsamopoulos J Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12611-12617. PubMed ID: 32434919 [TBL] [Abstract][Full Text] [Related]
11. Continuum modeling of shear startup in soft glassy materials. Benzi R; Divoux T; Barentin C; Manneville S; Sbragaglia M; Toschi F Phys Rev E; 2021 Sep; 104(3-1):034612. PubMed ID: 34654204 [TBL] [Abstract][Full Text] [Related]
12. Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations. Tseng HC; Wu JS; Chang RY Phys Chem Chem Phys; 2010 Apr; 12(16):4051-65. PubMed ID: 20379496 [TBL] [Abstract][Full Text] [Related]
13. Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer. Bera PK; Kandar AK; Krishnaswamy R; Sood AK J Phys Condens Matter; 2019 Dec; 31(50):504004. PubMed ID: 31491774 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS). Chan RW J Rheol (N Y N Y); 2018 May; 62(3):695-712. PubMed ID: 29780189 [TBL] [Abstract][Full Text] [Related]
15. Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural rubber compounds. Yasin S; Hussain M; Zheng Q; Song Y J Colloid Interface Sci; 2021 Apr; 588():602-610. PubMed ID: 33162040 [TBL] [Abstract][Full Text] [Related]
16. Ageing and yield behaviour in model soft colloidal glasses. Christopoulou C; Petekidis G; Erwin B; Cloitre M; Vlassopoulos D Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5051-71. PubMed ID: 19933127 [TBL] [Abstract][Full Text] [Related]
17. Dissipation and strain-stiffening behavior of pectin-Ca gels under LAOS. John J; Ray D; Aswal VK; Deshpande AP; Varughese S Soft Matter; 2019 Aug; 15(34):6852-6866. PubMed ID: 31410439 [TBL] [Abstract][Full Text] [Related]
18. Quantification of plasticity via particle dynamics above and below yield in a 2D jammed suspension. Galloway KL; Jerolmack DJ; Arratia PE Soft Matter; 2020 May; 16(18):4373-4382. PubMed ID: 32253419 [TBL] [Abstract][Full Text] [Related]
19. Interplay between yielding, 'recovery', and strength of yield stress fluids for direct ink writing: new insights from oscillatory rheology. Agrawal R; García-Tuñón E Soft Matter; 2024 Sep; 20(37):7429-7447. PubMed ID: 39258474 [TBL] [Abstract][Full Text] [Related]
20. From yield stress to elastic instabilities: Tuning the extensional behavior of elastoviscoplastic fluids. Abdelgawad MS; Haward SJ; Shen AQ; Rosti ME PNAS Nexus; 2024 Jun; 3(6):pgae227. PubMed ID: 38911595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]