These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32839383)

  • 1. Biomimetic Catalysts Based on Au@ZnO-Graphene Composites for the Generation of Hydrogen by Water Splitting.
    Machín A; Arango JC; Fontánez K; Cotto M; Duconge J; Soto-Vázquez L; Resto E; Petrescu FIT; Morant C; Márquez F
    Biomimetics (Basel); 2020 Aug; 5(3):. PubMed ID: 32839383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic Activity of Silver-Based Biomimetics Composites.
    Machín A; Soto-Vázquez L; Colón-Cruz C; Valentín-Cruz CA; Claudio-Serrano GJ; Fontánez K; Resto E; Petrescu FI; Morant C; Márquez F
    Biomimetics (Basel); 2021 Jan; 6(1):. PubMed ID: 33406738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO
    Pinilla S; Machín A; Park SH; Arango JC; Nicolosi V; Márquez-Linares F; Morant C
    J Phys Chem B; 2018 Jan; 122(2):972-983. PubMed ID: 29058914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Catalysts Based on Au@TiO
    Fontánez K; García D; Ortiz D; Sampayo P; Hernández L; Cotto M; Ducongé J; Díaz F; Morant C; Petrescu F; Machín A; Márquez F
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical metal/semiconductor nanostructure for efficient water splitting.
    Thiyagarajan P; Ahn HJ; Lee JS; Yoon JC; Jang JH
    Small; 2013 Jul; 9(13):2341-7. PubMed ID: 23292824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors.
    Lupan O; Postica V; Wolff N; Su J; Labat F; Ciofini I; Cavers H; Adelung R; Polonskyi O; Faupel F; Kienle L; Viana B; Pauporté T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32115-32126. PubMed ID: 31385698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed laser synthesis of reduced graphene oxide supported ZnO/Au nanostructures in liquid with enhanced solar light photocatalytic activity.
    Naik SS; Lee SJ; Begildayeva T; Yu Y; Lee H; Choi MY
    Environ Pollut; 2020 Nov; 266(Pt 2):115247. PubMed ID: 32717637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Electron Transfer across a ZnO-MoS
    Kumar S; Reddy NL; Kushwaha HS; Kumar A; Shankar MV; Bhattacharyya K; Halder A; Krishnan V
    ChemSusChem; 2017 Sep; 10(18):3588-3603. PubMed ID: 28703495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Study of H
    Perera DC; Rasaiah JC
    ACS Omega; 2023 Sep; 8(35):32185-32203. PubMed ID: 37692258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au/CdS Core-Shell Sensitized Actinomorphic Flower-Like ZnO Nanorods for Enhanced Photocatalytic Water Splitting Performance.
    Li Y; Liu T; Feng S; Yang W; Zhu Y; Zhao Y; Liu Z; Yang H; Fu W
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of uniform gold nanoparticles of different quantity deposited on zinc oxide nanorods for photoelectrochemical water splitting.
    Yu J; Kim J
    Chemosphere; 2022 Jan; 287(Pt 3):132168. PubMed ID: 34826931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic Perfomance of ZnO-Graphene Oxide Composites towards the Degradation of Vanillic Acid under Solar Radiation and Visible-LED.
    Mirikaram N; Pérez-Molina Á; Morales-Torres S; Salemi A; Maldonado-Hódar FJ; Pastrana-Martínez LM
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting.
    Hernández S; Hidalgo D; Sacco A; Chiodoni A; Lamberti A; Cauda V; Tresso E; Saracco G
    Phys Chem Chem Phys; 2015 Mar; 17(12):7775-86. PubMed ID: 25715190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold as an intruder in ZnO nanowires.
    Méndez-Reyes JM; Monroy BM; Bizarro M; Güell F; Martínez A; Ramos E
    Phys Chem Chem Phys; 2015 Sep; 17(33):21525-32. PubMed ID: 26219752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Photocatalytic Hydrogen Production of Pt-Graphene/TiO₂ Composites from Water Splitting.
    Nguyen NT; Zheng DD; Chen SS; Chang CT
    J Nanosci Nanotechnol; 2018 Jan; 18(1):48-55. PubMed ID: 29768810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior.
    Shin HS; Sohn JI; Kim DC; Huck WT; Welland ME; Choi HC; Kang DJ
    Nanotechnology; 2009 Feb; 20(8):085601. PubMed ID: 19417449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting.
    Guo CX; Xie J; Yang H; Li CM
    Adv Sci (Weinh); 2015 Dec; 2(12):1500135. PubMed ID: 27980921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO-Loaded Graphene for NO
    Alouani MA; Casanova-Cháfer J; Güell F; Peña-Martín E; Ruiz-Martínez-Alcocer S; de Bernardi-Martín S; García-Gómez A; Vilanova X; Llobet E
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.