BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

695 related articles for article (PubMed ID: 32839408)

  • 1. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings.
    Song Q; Joshi M; Joshi V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.
    Yang Y; Lu X; Yan B; Li B; Sun J; Guo S; Tezuka T
    J Plant Physiol; 2013 May; 170(7):653-61. PubMed ID: 23399406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
    Das P; Majumder AL
    Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity.
    Yaish MW; Patankar HV; Assaha DVM; Zheng Y; Al-Yahyai R; Sunkar R
    BMC Genomics; 2017 Mar; 18(1):246. PubMed ID: 28330456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.
    Xu J; Zhang M; Liu G; Yang X; Hou X
    Plant Physiol Biochem; 2016 Dec; 109():561-570. PubMed ID: 27837724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen.
    Nawaz MA; Chen C; Shireen F; Zheng Z; Sohail H; Afzal M; Ali MA; Bie Z; Huang Y
    BMC Genomics; 2018 Jun; 19(1):456. PubMed ID: 29898660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic and Metabolomic Analysis of the Effects of Exogenous Trehalose on Salt Tolerance in Watermelon (
    Yuan G; Sun D; An G; Li W; Si W; Liu J; Zhu Y
    Cells; 2022 Jul; 11(15):. PubMed ID: 35954182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system.
    Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y
    PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings.
    Yue J; Wang Y; Jiao J; Wang H
    BMC Plant Biol; 2021 Dec; 21(1):577. PubMed ID: 34872497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.
    Yang Y; Yu L; Wang L; Guo S
    J Plant Physiol; 2015 Aug; 186-187():50-8. PubMed ID: 26368284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana.
    Zhang M; Zhang GQ; Kang HH; Zhou SM; Wang W
    Plant Cell Physiol; 2017 Oct; 58(10):1673-1688. PubMed ID: 29016965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Transcriptome Profiling Provides Insights into Plant Salt Tolerance in Watermelon (
    Zhu Y; Yuan G; Gao B; An G; Li W; Si W; Sun D; Liu J
    Life (Basel); 2022 Jul; 12(7):. PubMed ID: 35888121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.
    Yang Y; Mo Y; Yang X; Zhang H; Wang Y; Li H; Wei C; Zhang X
    PLoS One; 2016; 11(11):e0166314. PubMed ID: 27861528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings.
    Shi X; Wang X; Cheng F; Cao H; Liang H; Lu J; Kong Q; Bie Z
    J Proteomics; 2019 Feb; 192():311-320. PubMed ID: 30267873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response.
    Huang C; Zhou J; Jie Y; Xing H; Zhong Y; Yu W; She W; Ma Y; Liu Z; Zhang Y
    DNA Cell Biol; 2016 Dec; 35(12):776-786. PubMed ID: 27845851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress.
    Banaei-Asl F; Farajzadeh D; Bandehagh A; Komatsu S
    Biochim Biophys Acta; 2016 Sep; 1864(9):1222-1236. PubMed ID: 27137672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings.
    Yang Y; Wang L; Tian J; Li J; Sun J; He L; Guo S; Tezuka T
    Plant Physiol Biochem; 2012 Sep; 58():54-65. PubMed ID: 22771436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of tissue-specific transcriptomic responses to nitrogen stress in spinach (Spinacia oleracea).
    Joshi V; Joshi M; Penalosa A
    PLoS One; 2020; 15(5):e0232011. PubMed ID: 32374731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.