These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32839461)

  • 1. On the role of microkinetic network structure in the interplay between oxygen evolution reaction and catalyst dissolution.
    Dam AP; Papakonstantinou G; Sundmacher K
    Sci Rep; 2020 Aug; 10(1):14140. PubMed ID: 32839461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Preparation of Crystalline Hydrous Iridium Oxide and Its Use in Oxygen Evolution Catalysis.
    Qi J; Zeng H; Gu L; Liu Z; Zeng Y; Hong E; Lai Y; Liu T; Yang C
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15269-15278. PubMed ID: 36930828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Study of IrO
    Zagalskaya A; Alexandrov V
    J Phys Chem Lett; 2020 Apr; 11(7):2695-2700. PubMed ID: 32188249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media.
    Zhang R; Dubouis N; Ben Osman M; Yin W; Sougrati MT; Corte DAD; Giaume D; Grimaud A
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4571-4575. PubMed ID: 30672081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Etching Switches Electrocatalytic Oxygen Evolution Pathway of IrO
    Tan X; Zhang M; Chen D; Li W; Gou W; Qu Y; Ma Y
    Small; 2023 Nov; 19(44):e2303249. PubMed ID: 37386788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Analysis of the Unusual Stability of an IrNbO
    Spöri C; Falling LJ; Kroschel M; Brand C; Bonakdarpour A; Kühl S; Berger D; Gliech M; Jones TE; Wilkinson DP; Strasser P
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3748-3761. PubMed ID: 33442973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The low overpotential regime of acidic water oxidation part II: trends in metal and oxygen stability numbers.
    Scott SB; Sørensen JE; Rao RR; Moon C; Kibsgaard J; Shao-Horn Y; Chorkendorff I
    Energy Environ Sci; 2022 May; 15(5):1988-2001. PubMed ID: 35706421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural impacts on the degradation behaviors of Ir-based electrocatalysts during water oxidation in acid.
    Li M; Qi J; Zeng H; Chen J; Liu Z; Gu L; Wang J; Zhang Y; Wang M; Zhang Y; Lu X; Yang C
    J Colloid Interface Sci; 2024 Jun; 674():108-117. PubMed ID: 38917711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms.
    Lončar A; Escalera-López D; Cherevko S; Hodnik N
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202114437. PubMed ID: 34942052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.
    Oh HS; Nong HN; Reier T; Bergmann A; Gliech M; Ferreira de Araújo J; Willinger E; Schlögl R; Teschner D; Strasser P
    J Am Chem Soc; 2016 Sep; 138(38):12552-63. PubMed ID: 27549910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).
    Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P
    J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution.
    Sun W; Tian X; Liao J; Deng H; Ma C; Ge C; Yang J; Huang W
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29414-29423. PubMed ID: 32496754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step.
    Moysiadou A; Lee S; Hsu CS; Chen HM; Hu X
    J Am Chem Soc; 2020 Jul; 142(27):11901-11914. PubMed ID: 32539368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functionally stable manganese oxide oxygen evolution catalyst in acid.
    Huynh M; Bediako DK; Nocera DG
    J Am Chem Soc; 2014 Apr; 136(16):6002-10. PubMed ID: 24669981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by
    Balaghi SE; Mehrabani S; Mousazade Y; Bagheri R; Sologubenko AS; Song Z; Patzke GR; Najafpour MM
    ACS Appl Mater Interfaces; 2021 May; 13(17):19927-19937. PubMed ID: 33886278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction.
    Lee S; Lee YJ; Lee G; Soon A
    Nat Commun; 2022 Jun; 13(1):3171. PubMed ID: 35676247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium.
    Kasian O; Grote JP; Geiger S; Cherevko S; Mayrhofer KJJ
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2488-2491. PubMed ID: 29219237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution.
    Rabe M; Toparli C; Chen YH; Kasian O; Mayrhofer KJJ; Erbe A
    Phys Chem Chem Phys; 2019 May; 21(20):10457-10469. PubMed ID: 31070222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Oxygen Exchange in Rutile IrO
    Schweinar K; Gault B; Mouton I; Kasian O
    J Phys Chem Lett; 2020 Jul; 11(13):5008-5014. PubMed ID: 32496784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.