BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32839481)

  • 1. C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes.
    González-Ramírez EJ; García-Arribas AB; Sot J; Goñi FM; Alonso A
    Sci Rep; 2020 Aug; 10(1):14085. PubMed ID: 32839481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol.
    García-Arribas AB; González-Ramírez EJ; Sot J; Areso I; Alonso A; Goñi FM
    Langmuir; 2017 Jun; 33(22):5545-5554. PubMed ID: 28510438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
    González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A
    Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase behaviour of C18-N-acyl sphingolipids, the prevalent species in human brain.
    González-Ramírez EJ; Etxaniz A; Alonso A; Goñi FM
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112855. PubMed ID: 36137336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes.
    Westerlund B; Grandell PM; Isaksson YJ; Slotte JP
    Eur Biophys J; 2010 Jul; 39(8):1117-28. PubMed ID: 19908035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N; García-Arribas AB; Sot J; Alonso A; Goñi FM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy.
    Guyomarc'h F; Chen M; Et-Thakafy O; Zou S; Lopez C
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):949-958. PubMed ID: 28215536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals.
    Edagawa M; Sawai M; Ohno Y; Kihara A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1441-1448. PubMed ID: 30251650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol interactions with ceramide and sphingomyelin.
    García-Arribas AB; Alonso A; Goñi FM
    Chem Phys Lipids; 2016 Sep; 199():26-34. PubMed ID: 27132117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of milk sphingomyelin bilayer membranes in the gel phase: Effects of naturally complex heterogeneity, saturation and acyl chain length investigated on liposomes using AFM.
    Et-Thakafy O; Delorme N; Guyomarc'h F; Lopez C
    Chem Phys Lipids; 2018 Jan; 210():47-59. PubMed ID: 29175259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains.
    Pullmannová P; Pavlíková L; Kováčik A; Sochorová M; Školová B; Slepička P; Maixner J; Zbytovská J; Vávrová K
    Biophys Chem; 2017 May; 224():20-31. PubMed ID: 28363088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes.
    Courtney KC; Pezeshkian W; Raghupathy R; Zhang C; Darbyson A; Ipsen JH; Ford DA; Khandelia H; Presley JF; Zha X
    Cell Rep; 2018 Jul; 24(4):1037-1049. PubMed ID: 30044971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum Sphingolipidomic Analysis in Acne Vulgaris Patients.
    Kaya S; Aslan İ; Kıraç E; Karaarslan T; Aslan M
    Ann Clin Lab Sci; 2019 Mar; 49(2):242-248. PubMed ID: 31028071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens alpha-toxin.
    Oda M; Matsuno T; Shiihara R; Ochi S; Yamauchi R; Saito Y; Imagawa H; Nagahama M; Nishizawa M; Sakurai J
    J Lipid Res; 2008 May; 49(5):1039-47. PubMed ID: 18263851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid domain formation and membrane shaping by C24-ceramide.
    Ventura AE; Varela ARP; Dingjan T; Santos TCB; Fedorov A; Futerman AH; Prieto M; Silva LC
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183400. PubMed ID: 32565121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingomyelins and ceramides: possible biomarkers for dementia?
    Loft LMI; Moseholm KF; Pedersen KKW; Jensen MK; Koch M; Cronjé HT
    Curr Opin Lipidol; 2022 Feb; 33(1):57-67. PubMed ID: 34879042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the role of ceramide hydroxylation in skin barrier lipid models by
    Kováčik A; Vogel A; Adler J; Pullmannová P; Vávrová K; Huster D
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1162-1170. PubMed ID: 29408487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.