These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 32839482)
1. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence. Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482 [TBL] [Abstract][Full Text] [Related]
2. Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a. Ishibashi R; Maki R; Kitano S; Miyachi H; Toyoshima F Sci Rep; 2022 Oct; 12(1):17775. PubMed ID: 36272994 [TBL] [Abstract][Full Text] [Related]
3. Gene targeting in adult organs using in vivo cleavable donor plasmids for CRISPR-Cas9 and CRISPR-Cas12a. Ishibashi R; Maki R; Toyoshima F Sci Rep; 2024 Mar; 14(1):7615. PubMed ID: 38556532 [TBL] [Abstract][Full Text] [Related]
4. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination. Eschstruth A; Schneider-Maunoury S; Giudicelli F Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409 [TBL] [Abstract][Full Text] [Related]
5. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796 [TBL] [Abstract][Full Text] [Related]
6. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. Liang X; Potter J; Kumar S; Ravinder N; Chesnut JD J Biotechnol; 2017 Jan; 241():136-146. PubMed ID: 27845164 [TBL] [Abstract][Full Text] [Related]
7. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes. Bosch JA; Knight S; Kanca O; Zirin J; Yang-Zhou D; Hu Y; Rodiger J; Amador G; Bellen HJ; Perrimon N; Mohr SE Curr Protoc Mol Biol; 2020 Mar; 130(1):e112. PubMed ID: 31869524 [TBL] [Abstract][Full Text] [Related]
8. Transplacental delivery of genome editing components causes mutations in embryonic cardiomyocytes of mid-gestational murine fetuses. Nakamura S; Ishihara M; Ando N; Watanabe S; Sakurai T; Sato M IUBMB Life; 2019 Jul; 71(7):835-844. PubMed ID: 30635953 [TBL] [Abstract][Full Text] [Related]
9. One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering. Wang J; Torres IM; Shang M; Al-Armanazi J; Dilawar H; Hettiarachchi DU; Paladines-Parrales A; Chambers B; Pottle K; Soman M; Su B; Dunham RA Int J Biol Macromol; 2024 Mar; 260(Pt 1):129384. PubMed ID: 38224812 [TBL] [Abstract][Full Text] [Related]
10. Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA. König S; Yang Z; Wandall HH; Mussolino C; Bennett EP Methods Mol Biol; 2019; 1961():45-66. PubMed ID: 30912039 [TBL] [Abstract][Full Text] [Related]
11. Generation of Mouse Model (KI and CKO) via Easi-CRISPR. Shola DTN; Yang C; Han C; Norinsky R; Peraza RD Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Raveux A; Vandormael-Pournin S; Cohen-Tannoudji M Sci Rep; 2017 Feb; 7():42661. PubMed ID: 28209967 [TBL] [Abstract][Full Text] [Related]
13. Creating Genome Modifications in C. elegans Using the CRISPR/Cas9 System. Calarco JA; Friedland AE Methods Mol Biol; 2015; 1327():59-74. PubMed ID: 26423968 [TBL] [Abstract][Full Text] [Related]
14. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727 [TBL] [Abstract][Full Text] [Related]
15. Self-Cutting and Integrating CRISPR Plasmids Enable Targeted Genomic Integration of Genetic Payloads for Rapid Cell Engineering. Bloemberg D; Sosa-Miranda CD; Nguyen T; Weeratna RD; McComb S CRISPR J; 2021 Feb; 4(1):104-119. PubMed ID: 33616439 [TBL] [Abstract][Full Text] [Related]
16. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9. Zhang X; Liang P; Ding C; Zhang Z; Zhou J; Xie X; Huang R; Sun Y; Sun H; Zhang J; Xu Y; Songyang Z; Huang J Sci Rep; 2016 Sep; 6():32565. PubMed ID: 27586692 [TBL] [Abstract][Full Text] [Related]
17. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. Basila M; Kelley ML; Smith AVB PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845 [TBL] [Abstract][Full Text] [Related]
18. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843 [TBL] [Abstract][Full Text] [Related]
19. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Wu H; Liu Q; Shi H; Xie J; Zhang Q; Ouyang Z; Li N; Yang Y; Liu Z; Zhao Y; Lai C; Ruan D; Peng J; Ge W; Chen F; Fan N; Jin Q; Liang Y; Lan T; Yang X; Wang X; Lei Z; Doevendans PA; Sluijter JPG; Wang K; Li X; Lai L Cell Mol Life Sci; 2018 Oct; 75(19):3593-3607. PubMed ID: 29637228 [TBL] [Abstract][Full Text] [Related]
20. Genome Editing in Mice Using CRISPR/Cas9 Technology. Hall B; Cho A; Limaye A; Cho K; Khillan J; Kulkarni AB Curr Protoc Cell Biol; 2018 Dec; 81(1):e57. PubMed ID: 30178917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]