These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 32839642)

  • 1. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM.
    Shahid F; Zameer A; Muneeb M
    Chaos Solitons Fractals; 2020 Nov; 140():110212. PubMed ID: 32839642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
    Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A
    Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach.
    Zhou L; Zhao C; Liu N; Yao X; Cheng Z
    Eng Appl Artif Intell; 2023 Jun; 122():106157. PubMed ID: 36968247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India.
    Sah S; Surendiran B; Dhanalakshmi R; Mohanty SN; Alenezi F; Polat K
    Comput Math Methods Med; 2022; 2022():1556025. PubMed ID: 35529266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traffic flow prediction using bi-directional gated recurrent unit method.
    Wang S; Shao C; Zhang J; Zheng Y; Meng M
    Urban Inform; 2022; 1(1):16. PubMed ID: 36471871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of hepatitis E using machine learning models.
    Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J
    PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel recurrent neural network approach in forecasting short term solar irradiance.
    Jaihuni M; Basak JK; Khan F; Okyere FG; Sihalath T; Bhujel A; Park J; Lee DH; Kim HT
    ISA Trans; 2022 Feb; 121():63-74. PubMed ID: 33840460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China.
    Zhao Z; Zhai M; Li G; Gao X; Song W; Wang X; Ren H; Cui Y; Qiao Y; Ren J; Chen L; Qiu L
    BMC Infect Dis; 2023 Feb; 23(1):71. PubMed ID: 36747126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air quality index forecast in Beijing based on CNN-LSTM multi-model.
    Zhang J; Li S
    Chemosphere; 2022 Dec; 308(Pt 1):136180. PubMed ID: 36058367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting.
    Xu D; Zhang Q; Ding Y; Zhang D
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):4128-4144. PubMed ID: 34403057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China.
    Li X; Zhang X
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117485-117502. PubMed ID: 37867169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term solar energy forecasting: Integrated computational intelligence of LSTMs and GRU.
    Zameer A; Jaffar F; Shahid F; Muneeb M; Khan R; Nasir R
    PLoS One; 2023; 18(10):e0285410. PubMed ID: 37792739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of machine learning methods for COVID-19 transmission forecasting.
    Dairi A; Harrou F; Zeroual A; Hittawe MM; Sun Y
    J Biomed Inform; 2021 Jun; 118():103791. PubMed ID: 33915272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of COVID-19 Data Using Hybrid Modeling Approaches.
    Zhao W; Sun Y; Li Y; Guan W
    Front Public Health; 2022; 10():923978. PubMed ID: 35937245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning.
    Ahmed S; Mubarak S; Du JT; Wibowo S
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China.
    Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y
    PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting machine's performance record using the stacked long short-term memory (LSTM) neural networks.
    Ma M; Liu C; Wei R; Liang B; Dai J
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13558. PubMed ID: 35170838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning.
    Jin W; Dong S; Yu C; Luo Q
    Comput Biol Med; 2022 Jul; 146():105560. PubMed ID: 35551008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.