These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32839643)

  • 1. Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran.
    Wang P; Zheng X; Ai G; Liu D; Zhu B
    Chaos Solitons Fractals; 2020 Nov; 140():110214. PubMed ID: 32839643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time series forecasting of COVID-19 transmission in Canada using LSTM networks.
    Chimmula VKR; Zhang L
    Chaos Solitons Fractals; 2020 Jun; 135():109864. PubMed ID: 32390691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nesting the SIRV model with NAR, LSTM and statistical methods to fit and predict COVID-19 epidemic trend in Africa.
    Liu XD; Wang W; Yang Y; Hou BH; Olasehinde TS; Feng N; Dong XP
    BMC Public Health; 2023 Jan; 23(1):138. PubMed ID: 36658494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prediction and analysis of COVID-19 epidemic trend by combining LSTM and Markov method.
    Ma R; Zheng X; Wang P; Liu H; Zhang C
    Sci Rep; 2021 Aug; 11(1):17421. PubMed ID: 34465820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study.
    Shastri S; Singh K; Kumar S; Kour P; Mansotra V
    Chaos Solitons Fractals; 2020 Nov; 140():110227. PubMed ID: 32843824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning.
    Liu S; Wan Y; Yang W; Tan A; Jian J; Lei X
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics.
    Wang P; Zheng X; Li J; Zhu B
    Chaos Solitons Fractals; 2020 Oct; 139():110058. PubMed ID: 32834611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting the long-term trend of COVID-19 epidemic using a dynamic model.
    Sun J; Chen X; Zhang Z; Lai S; Zhao B; Liu H; Wang S; Huan W; Zhao R; Ng MTA; Zheng Y
    Sci Rep; 2020 Dec; 10(1):21122. PubMed ID: 33273592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic.
    Jiao F; Huang L; Song R; Huang H
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outbreak Trends of Coronavirus Disease-2019 in India: A Prediction.
    Tiwari S; Kumar S; Guleria K
    Disaster Med Public Health Prep; 2020 Oct; 14(5):e33-e38. PubMed ID: 32317044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Matrix Profile-Guided Attention LSTM Model for Forecasting COVID-19 Cases in USA.
    Liu Q; Fung DLX; Lac L; Hu P
    Front Public Health; 2021; 9():741030. PubMed ID: 34692627
    [No Abstract]   [Full Text] [Related]  

  • 13. Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach.
    Zhou L; Zhao C; Liu N; Yao X; Cheng Z
    Eng Appl Artif Intell; 2023 Jun; 122():106157. PubMed ID: 36968247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization.
    Abbasimehr H; Paki R
    Chaos Solitons Fractals; 2021 Jan; 142():110511. PubMed ID: 33281305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and forecasting trend of COVID-19 epidemic in Iran until May 13, 2020.
    Ahmadi A; Fadaei Y; Shirani M; Rahmani F
    Med J Islam Repub Iran; 2020; 34():27. PubMed ID: 32617266
    [No Abstract]   [Full Text] [Related]  

  • 16. COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series.
    Mohammad Masum AK; Khushbu SA; Keya M; Abujar S; Hossain SA
    Procedia Comput Sci; 2020; 178():291-300. PubMed ID: 33520018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models: A graphical user interface unit.
    Shafiekhani S; Namdar P; Rafiei S
    Digit Health; 2022; 8():20552076221085057. PubMed ID: 35355809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational and Mathematical Methods in Medicine Prediction of COVID-19 in BRICS Countries: An Integrated Deep Learning Model of CEEMDAN-R-ILSTM-Elman.
    Zhao Q; Zheng Z
    Comput Math Methods Med; 2022; 2022():1566727. PubMed ID: 35419081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting Covid-19 Transmission with ARIMA and LSTM Techniques in Morocco.
    Rguibi MA; Moussa N; Madani A; Aaroud A; Zine-Dine K
    SN Comput Sci; 2022; 3(2):133. PubMed ID: 35043096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning-Based Method for Forecasting Gold Price with Respect to Pandemics.
    Mohtasham Khani M; Vahidnia S; Abbasi A
    SN Comput Sci; 2021; 2(4):335. PubMed ID: 34151290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.