BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32839791)

  • 1. DNA branch migration amplification cascades for enzyme-free and non-label aptamer sensing of mucin 1.
    Peng Y; Yang F; Li X; Jiang B; Yuan R; Xiang Y
    Analyst; 2020 Sep; 145(18):6085-6090. PubMed ID: 32839791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker.
    Li J; Yang F; Jiang B; Zhou W; Xiang Y; Yuan R
    Analyst; 2021 Jan; 145(24):7858-7863. PubMed ID: 33020770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver nanoclusters-based fluorescent biosensing strategy for determination of mucin 1: Combination of exonuclease I-assisted target recycling and graphene oxide-assisted hybridization chain reaction.
    Wu H; Wu J; Liu Y; Wang H; Zou P
    Anal Chim Acta; 2020 Sep; 1129():40-48. PubMed ID: 32891389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascaded multiple recycling amplifications for aptamer-based ultrasensitive fluorescence detection of protein biomarkers.
    Qin Y; Li D; Yuan R; Xiang Y
    Analyst; 2019 Nov; 144(22):6635-6640. PubMed ID: 31591612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling strand extension/excision amplification with target recycling enables highly sensitive and aptamer-based label-free sensing of ATP in human serum.
    Xu L; Jiang B; Zhou W; Yuan R; Xiang Y
    Analyst; 2020 Jan; 145(2):434-439. PubMed ID: 31793560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy.
    Lin C; Zheng H; Huang Y; Chen Z; Luo F; Wang J; Guo L; Qiu B; Lin Z; Yang H
    Biosens Bioelectron; 2018 Oct; 117():474-479. PubMed ID: 29982116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded and nonlinear DNA assembly amplification for sensitive and aptamer-based detection of kanamycin.
    Liao L; Li X; Jiang B; Zhou W; Yuan R; Xiang Y
    Anal Chim Acta; 2022 Apr; 1204():339730. PubMed ID: 35397905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enzyme-free DNA circuit for the amplified detection of Cd
    Pan J; Zeng L; Chen J
    Chem Commun (Camb); 2019 Oct; 55(79):11932-11935. PubMed ID: 31531427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP.
    Li X; Peng Y; Chai Y; Yuan R; Xiang Y
    Chem Commun (Camb); 2016 Mar; 52(18):3673-6. PubMed ID: 26853492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.
    Jiang X; Wang H; Wang H; Yuan R; Chai Y
    Anal Chem; 2016 Sep; 88(18):9243-50. PubMed ID: 27529728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-constrained DNAzyme for aptamer-based and sensitive label-free fluorescent assay of sarafloxacin
    Wang Q; Zhang J; Yuan R; Xiang Y
    Analyst; 2023 May; 148(11):2459-2464. PubMed ID: 37158381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-initiated autonomous synthesis of metal-ion dependent DNAzymes for label-free and amplified fluorescence detection of kanamycin in milk samples.
    Zhou W; Xu L; Jiang B
    Anal Chim Acta; 2021 Mar; 1148():238195. PubMed ID: 33516378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification.
    Liu X; Qin Y; Deng C; Xiang J; Li Y
    Talanta; 2015 Jan; 132():150-4. PubMed ID: 25476292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-induced activation of polymerase activity for recycling signal amplification cascades for sensitive aptamer-based detection of biomarkers.
    Li Y; Li X; Yang F; Yuan R; Xiang Y
    Analyst; 2021 Mar; 146(5):1590-1595. PubMed ID: 33459734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1.
    Hu R; Wen W; Wang Q; Xiong H; Zhang X; Gu H; Wang S
    Biosens Bioelectron; 2014 Mar; 53():384-9. PubMed ID: 24189297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cascaded autocatalytic hairpin assembly molecular circuit for amplified fluorescent aptamer luteinising hormone assay.
    Bi X; Li S; Yang F; Yuan R; Xiang Y
    Talanta; 2024 Aug; 275():126150. PubMed ID: 38692046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.
    Xu Y; Zhou W; Zhou M; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2015 Feb; 64():306-10. PubMed ID: 25240130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria.
    Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J
    Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A label-free DNA hairpin biosensor for colorimetric detection of target with suitable functional DNA partners.
    Nie J; Zhang DW; Tie C; Zhou YL; Zhang XX
    Biosens Bioelectron; 2013 Nov; 49():236-42. PubMed ID: 23770395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-initiated triplex signal amplification cascades for non-label and sensitive fluorescence sensing of microRNA.
    Liao L; Gong T; Jiang B; Yuan R; Xiang Y
    Analyst; 2024 Jan; 149(2):451-456. PubMed ID: 38099654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.