These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 32839956)
1. Impact process of the aquitard to regional arsenic accumulation of the underlying aquifer in Central Yangtze River Basin. Xiao C; Ma T; Du Y; Liu Y; Liu R; Zhang D; Chen J Environ Geochem Health; 2021 Mar; 43(3):1091-1107. PubMed ID: 32839956 [TBL] [Abstract][Full Text] [Related]
2. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China. Yang Y; Deng Y; Xie X; Gan Y; Li J Ecotoxicol Environ Saf; 2020 Dec; 206():111120. PubMed ID: 32861962 [TBL] [Abstract][Full Text] [Related]
3. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Schaefer MV; Ying SC; Benner SG; Duan Y; Wang Y; Fendorf S Environ Sci Technol; 2016 Apr; 50(7):3521-9. PubMed ID: 26788939 [TBL] [Abstract][Full Text] [Related]
4. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China. Wang Y; Jiao JJ; Cherry JA Sci Total Environ; 2012 Jun; 427-428():286-97. PubMed ID: 22554534 [TBL] [Abstract][Full Text] [Related]
5. Organic carbon sources and controlling processes on aquifer arsenic cycling in the Jianghan Plain, central China. Yu K; Gan Y; Zhou A; Liu C; Duan Y; Han L; Zhang Y Chemosphere; 2018 Oct; 208():773-781. PubMed ID: 29902762 [TBL] [Abstract][Full Text] [Related]
6. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603 [TBL] [Abstract][Full Text] [Related]
7. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China. Wang Y; Jiao JJ; Cherry JA; Lee CM Sci Total Environ; 2013 Sep; 461-462():663-71. PubMed ID: 23770547 [TBL] [Abstract][Full Text] [Related]
8. Deciphering the spatial heterogeneity of groundwater arsenic in Quaternary aquifers of the Central Yangtze River Basin. Xu Y; Liu D; Yuan X; Yang Y; Li T; Deng Y; Wang Y Sci Total Environ; 2024 Jun; 929():172405. PubMed ID: 38626822 [TBL] [Abstract][Full Text] [Related]
9. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. Parker BL; Cherry JA; Chapman SW J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493 [TBL] [Abstract][Full Text] [Related]
10. Genesis of arsenic-rich groundwater and the search for alternative safe aquifers in the Gangetic Plain, India. Saha D; Shukla RR Water Environ Res; 2013 Dec; 85(12):2254-64. PubMed ID: 24597041 [TBL] [Abstract][Full Text] [Related]
11. Contribution of clay-aquitard to aquifer iron concentrations and water quality. Liu Y; Ma T; Chen J; Xiao C; Liu R; Du Y; Fendorf S Sci Total Environ; 2020 Nov; 741():140061. PubMed ID: 32603935 [TBL] [Abstract][Full Text] [Related]
12. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Du Y; Ma T; Deng Y; Shen S; Lu Z Environ Sci Process Impacts; 2017 Feb; 19(2):161-172. PubMed ID: 28203672 [TBL] [Abstract][Full Text] [Related]
13. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922 [TBL] [Abstract][Full Text] [Related]
14. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico. Ortega-Guerrero A Environ Geochem Health; 2017 Oct; 39(5):987-1003. PubMed ID: 27538751 [TBL] [Abstract][Full Text] [Related]
15. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Jiao JJ; Wang Y; Cherry JA; Wang X; Zhi B; Du H; Wen D Environ Sci Technol; 2010 Oct; 44(19):7470-5. PubMed ID: 20806932 [TBL] [Abstract][Full Text] [Related]
16. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
17. Organic matter degradation and arsenic enrichment in different floodplain aquifer systems along the middle reaches of Yangtze River: A thermodynamic analysis. Yang Y; Wang Q; Xue J; Tian S; Du Y; Xie X; Gan Y; Deng Y; Wang Y Water Res; 2023 Jul; 239():120072. PubMed ID: 37207456 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin. Xue J; Deng Y; Luo Y; Du Y; Yang Y; Cheng Y; Xie X; Gan Y; Wang Y Sci Total Environ; 2022 Mar; 814():151930. PubMed ID: 34843759 [TBL] [Abstract][Full Text] [Related]
19. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems. Du Y; Deng Y; Ma T; Lu Z; Shen S; Gan Y; Wang Y Sci Total Environ; 2018 Dec; 645():1159-1171. PubMed ID: 30248841 [TBL] [Abstract][Full Text] [Related]
20. Arsenic contamination in groundwater and its possible sources in Hanam, Vietnam. Phuong NM; Kang Y; Sakurai K; Sugihara M; Kien CN; Bang ND; Ngoc HM Environ Monit Assess; 2012 Jul; 184(7):4501-15. PubMed ID: 21830065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]