These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 32839956)
21. Identifying the source of groundwater contaminants in West-Central Wisconsin, U.S.A.: Geochemical and mineralogical characterization of the Cambrian sandstone aquifer. Zambito JJ; Haas LD; Parsen MJ J Contam Hydrol; 2022 May; 247():103966. PubMed ID: 35219125 [TBL] [Abstract][Full Text] [Related]
22. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
23. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China. Zheng T; Deng Y; Wang Y; Jiang H; Xie X; Gan Y Sci Total Environ; 2020 Sep; 735():139327. PubMed ID: 32473437 [TBL] [Abstract][Full Text] [Related]
24. Three-Dimensional Numerical Investigation of Pore Water Pressure and Deformation of Pumped Aquifer Systems. Zhang Y; Yan X; Yang T; Wu J; Wu J Ground Water; 2020 Mar; 58(2):278-290. PubMed ID: 31131880 [TBL] [Abstract][Full Text] [Related]
25. Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. Varner TS; Kulkarni HV; Nguyen W; Kwak K; Cardenas MB; Knappett PSK; Ojeda AS; Malina N; Bhuiyan MU; Ahmed KM; Datta S Chemosphere; 2022 Dec; 308(Pt 2):136289. PubMed ID: 36058378 [TBL] [Abstract][Full Text] [Related]
26. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India. Saha D; Sahu S Environ Geochem Health; 2016 Apr; 38(2):315-37. PubMed ID: 26116052 [TBL] [Abstract][Full Text] [Related]
27. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance. Liu R; Ma T; Qiu W; Du Y; Liu Y Sci Total Environ; 2020 Jan; 701():134776. PubMed ID: 31726411 [TBL] [Abstract][Full Text] [Related]
28. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464 [TBL] [Abstract][Full Text] [Related]
29. Shallow hydrostratigraphy in an arsenic affected region of Bengal Basin: implication for targeting safe aquifers for drinking water supply. Biswas A; Bhattacharya P; Mukherjee A; Nath B; Alexanderson H; Kundu AK; Chatterjee D; Jacks G Sci Total Environ; 2014 Jul; 485-486():12-22. PubMed ID: 24704952 [TBL] [Abstract][Full Text] [Related]
30. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer-aquitard system. Wang Y; Jiao JJ; Zhu S; Li Y Environ Pollut; 2013 Aug; 179():160-6. PubMed ID: 23680973 [TBL] [Abstract][Full Text] [Related]
31. Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity. Fakhreddine S; Prommer H; Gorelick SM; Dadakis J; Fendorf S Environ Sci Technol; 2020 Jul; 54(14):8728-8738. PubMed ID: 32516527 [TBL] [Abstract][Full Text] [Related]
32. Identification of arsenic spatial distribution by hydrogeochemical processes represented by different ion ratios in the Hohhot Basin, China. Ren Y; Cao W; Li Z; Pan D; Wang S Environ Sci Pollut Res Int; 2023 Jan; 30(2):2607-2621. PubMed ID: 35932348 [TBL] [Abstract][Full Text] [Related]
33. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA. Yang Q; Culbertson CW; Nielsen MG; Schalk CW; Johnson CD; Marvinney RG; Stute M; Zheng Y Sci Total Environ; 2015 Feb; 505():1291-307. PubMed ID: 24842411 [TBL] [Abstract][Full Text] [Related]
34. A mass balance approach to investigate arsenic cycling in a petroleum plume. Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347 [TBL] [Abstract][Full Text] [Related]
35. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system. Huang S; Liu C; Wang Y; Zhan H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):478-89. PubMed ID: 24345245 [TBL] [Abstract][Full Text] [Related]
36. Dissolved and solid-phase arsenic fate in an arsenic-enriched aquifer in the river Brahmaputra alluvial plain. Baviskar S; Choudhury R; Mahanta C Environ Monit Assess; 2015 Mar; 187(3):93. PubMed ID: 25663398 [TBL] [Abstract][Full Text] [Related]
37. Chemical and mineralogical variability of sediment in a Quaternary aquifer from Huaihe River Basin, China: Implications for groundwater arsenic source and its mobilization. Xu N; Zhang F; Xu N; Li L; Liu L Sci Total Environ; 2023 Mar; 865():160864. PubMed ID: 36526174 [TBL] [Abstract][Full Text] [Related]
38. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers. Baillieux A; Campisi D; Jammet N; Bucher S; Hunkeler D J Contam Hydrol; 2014 Nov; 169():123-131. PubMed ID: 25249478 [TBL] [Abstract][Full Text] [Related]
39. Hydro-geochemical control of high arsenic and fluoride groundwater in arid and semi-arid areas: A case study of Tumochuan Plain, China. Dong S; Liu B; Chen Y; Ma M; Liu X; Wang C Chemosphere; 2022 Aug; 301():134657. PubMed ID: 35447201 [TBL] [Abstract][Full Text] [Related]
40. Enrichment of High Arsenic Groundwater Controlled by Hydrogeochemical and Physical Processes in the Hetao Basin, China. Cao W; Ren Y; Dong Q; Li Z; Xiao S Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]