These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 32839982)
61. Development and Validation of an Analytical Methodology Based on Liquid Chromatography-Electrospray Tandem Mass Spectrometry for the Simultaneous Determination of Phenolic Compounds in Olive Leaf Extract. Cittan M; Çelik A J Chromatogr Sci; 2018 Apr; 56(4):336-343. PubMed ID: 29373655 [TBL] [Abstract][Full Text] [Related]
62. Identification of Predominant Phytochemical Compounds and Cytotoxic Activity of Wild Olive Leaves (Olea europaea L. ssp. sylvestris) Harvested in South Portugal. Makowska-Wąs J; Galanty A; Gdula-Argasińska J; Tyszka-Czochara M; Szewczyk A; Nunes R; Carvalho IS; Michalik M; Paśko P Chem Biodivers; 2017 Mar; 14(3):. PubMed ID: 27981754 [TBL] [Abstract][Full Text] [Related]
63. White rice enrichment with phenols upon cooking in olive leaf infusion: a preliminary study. Noureldein M; Grigorakis S; Kellil A; Nenadis N J Sci Food Agric; 2023 Dec; 103(15):7403-7410. PubMed ID: 37384660 [TBL] [Abstract][Full Text] [Related]
64. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. Kontogianni VG; Charisiadis P; Margianni E; Lamari FN; Gerothanassis IP; Tzakos AG J Med Food; 2013 Sep; 16(9):817-22. PubMed ID: 24044491 [TBL] [Abstract][Full Text] [Related]
65. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Fu S; Arráez-Roman D; Segura-Carretero A; Menéndez JA; Menéndez-Gutiérrez MP; Micol V; Fernández-Gutiérrez A Anal Bioanal Chem; 2010 May; 397(2):643-54. PubMed ID: 20238105 [TBL] [Abstract][Full Text] [Related]
66. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells. Goldsmith CD; Vuong QV; Sadeqzadeh E; Stathopoulos CE; Roach PD; Scarlett CJ Molecules; 2015 Jul; 20(7):12992-3004. PubMed ID: 26193251 [TBL] [Abstract][Full Text] [Related]
67. New by-products rich in bioactive substances from the olive oil mill processing. Romero C; Medina E; Mateo MA; Brenes M J Sci Food Agric; 2018 Jan; 98(1):225-230. PubMed ID: 28580634 [TBL] [Abstract][Full Text] [Related]
68. Special designed deep eutectic solvents for the recovery of high added-value products from olive leaf: a sustainable environment for bioactive materials. Şahin S; Kurtulbaş E; Bilgin M Prep Biochem Biotechnol; 2021; 51(5):422-429. PubMed ID: 33000995 [TBL] [Abstract][Full Text] [Related]
69. Insecticidal effects of the Olea europaea subsp. laperrinei extracts on the flour Pyralid Ephestia kuehniella. Lahcene S; Taibi F; Mestar N; Ali Ahmed S; Boumendjel M; Ouafi S; Houali K Cell Mol Biol (Noisy-le-grand); 2018 Aug; 64(11):6-12. PubMed ID: 30213282 [TBL] [Abstract][Full Text] [Related]
70. Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Katsinas N; Enríquez-de-Salamanca A; Bento da Silva A; Bronze MR; Rodríguez-Rojo S Molecules; 2021 Oct; 26(19):. PubMed ID: 34641545 [TBL] [Abstract][Full Text] [Related]
71. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim. Ricciutelli M; Marconi S; Boarelli MC; Caprioli G; Sagratini G; Ballini R; Fiorini D J Chromatogr A; 2017 Jan; 1481():53-63. PubMed ID: 28024731 [TBL] [Abstract][Full Text] [Related]
73. Lamalbid, Chlorogenic Acid, and Verbascoside as Tools for Standardization of Czerwińska ME; Kalinowska E; Popowski D; Bazylko A Molecules; 2020 Apr; 25(7):. PubMed ID: 32283643 [TBL] [Abstract][Full Text] [Related]
74. Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC-DAD-ESI-MS/MS. Fang X; Wang J; Hao J; Li X; Guo N Food Chem; 2015 Dec; 188():527-36. PubMed ID: 26041227 [TBL] [Abstract][Full Text] [Related]
75. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Mylonaki S; Kiassos E; Makris DP; Kefalas P Anal Bioanal Chem; 2008 Nov; 392(5):977-85. PubMed ID: 18762919 [TBL] [Abstract][Full Text] [Related]
76. Olive leaf extract activity against Candida albicans and C. dubliniensis - the in vitro viability study. Zorić N; Kopjar N; Kraljić K; Oršolić N; Tomić S; Kosalec I Acta Pharm; 2016 Sep; 66(3):411-21. PubMed ID: 27383889 [TBL] [Abstract][Full Text] [Related]
77. A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free-radical scavenging method. Sueishi Y; Nii R J Food Sci; 2020 Sep; 85(9):2737-2744. PubMed ID: 32844426 [TBL] [Abstract][Full Text] [Related]
78. Oleuropein Is Responsible for the Major Anti-Inflammatory Effects of Olive Leaf Extract. Qabaha K; Al-Rimawi F; Qasem A; Naser SA J Med Food; 2018 Mar; 21(3):302-305. PubMed ID: 29099642 [TBL] [Abstract][Full Text] [Related]
79. Efficient method for screening and identification of radical scavengers in the leaves of Olea europaea L. Wang X; Li C; Liu Y; Li H; Di D Biomed Chromatogr; 2011 Mar; 25(3):373-80. PubMed ID: 21321972 [TBL] [Abstract][Full Text] [Related]
80. Simultaneous separation and purification of flavonoids and oleuropein from Olea europaea L. (olive) leaves using macroporous resin. Li C; Zheng Y; Wang X; Feng S; Di D J Sci Food Agric; 2011 Dec; 91(15):2826-34. PubMed ID: 21744357 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]