These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32839995)

  • 41. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces.
    Adhikari A; Syamaladevi RM; Killinger K; Sablani SS
    Int J Food Microbiol; 2015 Oct; 210():136-42. PubMed ID: 26122954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced oxidation technology with photohydroionization as a surface treatment for controlling Listeria monocytogenes on stainless steel surfaces and ready-to-eat cheese and turkey.
    Saini JK; Marsden JL; Getty KJ; Fung DY
    Foodborne Pathog Dis; 2014 Apr; 11(4):295-300. PubMed ID: 24444302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas.
    Mahmoud BS; Vaidya NA; Corvalan CM; Linton RH
    Food Microbiol; 2008 Oct; 25(7):857-65. PubMed ID: 18721673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157:H7 and Listeria monocytogenes on fresh strawberries (Fragaria x ananassa).
    Udompijitkul P; Daeschel MA; Zhao Y
    J Food Sci; 2007 Nov; 72(9):M397-406. PubMed ID: 18034734
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of a novel antimicrobial coating on roast beef for inactivation and inhibition of Listeria monocytogenes during storage.
    Wang L; Zhao L; Yuan J; Jin TZ
    Int J Food Microbiol; 2015 Oct; 211():66-72. PubMed ID: 26173201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined Effect of Thermosonication and Slightly Acidic Electrolyzed Water to Reduce Foodborne Pathogens and Spoilage Microorganisms on Fresh-cut Kale.
    Mansur AR; Oh DH
    J Food Sci; 2015 Jun; 80(6):M1277-84. PubMed ID: 25944413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced inactivation of foodborne pathogenic and spoilage bacteria by FD&C Red no. 3 and other xanthene derivatives during ultrahigh pressure processing.
    Waite JG; Yousef AE
    J Food Prot; 2008 Sep; 71(9):1861-7. PubMed ID: 18810870
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postharvest physio-pathological disorders in table grapes as affected by UV-C light.
    D'Hallewin G; Ladu G; Pani G; Dore A; Molinu MG; Venditti T
    Commun Agric Appl Biol Sci; 2012; 77(4):515-25. PubMed ID: 23885419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of ozone during grape drying for the production of straw wine. Effects on the microbiota and compositive profile of grapes.
    Guzzon R; Franciosi E; Moser S; Carafa I; Larcher R
    J Appl Microbiol; 2018 Aug; 125(2):513-527. PubMed ID: 29624801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficacy of plant-derived compounds combined with hydrogen peroxide as antimicrobial wash and coating treatment for reducing Listeria monocytogenes on cantaloupes.
    Upadhyay A; Upadhyaya I; Mooyottu S; Kollanoor-Johny A; Venkitanarayanan K
    Food Microbiol; 2014 Dec; 44():47-53. PubMed ID: 25084644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of chitosan from Cunninghamella elegans on virulence of post-harvest pathogenic fungi in table grapes (Vitis labrusca L.).
    de Oliveira CE; Magnani M; de Sales CV; de Souza Pontes AL; Campos-Takaki GM; Stamford TC; de Souza EL
    Int J Food Microbiol; 2014 Feb; 171():54-61. PubMed ID: 24321603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.
    Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F
    Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antimicrobial treatments to control Listeria monocytogenes in queso fresco.
    Lourenço A; Kamnetz MB; Gadotti C; Diez-Gonzalez F
    Food Microbiol; 2017 Jun; 64():47-55. PubMed ID: 28213034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of nisin-coated plastic films to control Listeria monocytogenes on vacuum-packaged cold-smoked salmon.
    Neetoo H; Ye M; Chen H; Joerger RD; Hicks DT; Hoover DG
    Int J Food Microbiol; 2008 Feb; 122(1-2):8-15. PubMed ID: 18086503
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Viability of multi-strain mixtures of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 inoculated into the batter or onto the surface of a soudjouk-style fermented semi-dry sausage.
    Porto-Fett AC; Hwang CA; Call JE; Juneja VK; Ingham SC; Ingham BH; Luchansky JB
    Food Microbiol; 2008 Sep; 25(6):793-801. PubMed ID: 18620971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of a sanitizing washing step with different chemical disinfectants for the strawberry processing industry.
    Ortiz-Solà J; Abadias M; Colás-Medà P; Sánchez G; Bobo G; Viñas I
    Int J Food Microbiol; 2020 Dec; 334():108810. PubMed ID: 32805511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of sodium lactate and other additives in a cooked ham product on sensory quality and development of a strain of Lactobacillus curvatus and Listeria monocytogenes.
    Stekelenburg FK; Kant-Muermans ML
    Int J Food Microbiol; 2001 Jun; 66(3):197-203. PubMed ID: 11428579
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Verification of peroxyacetic acid treatment against L. monocytogenes on fresh apples using E. faecium NRRL B-2354 as a surrogate in commercial spray-bar operations.
    Shen X; Su Y; Hua Z; Cong J; Dhowlaghar N; Sun Q; Lin S; Green T; Perrault M; Galeni M; Hanrahan I; Suslow TV; Zhu MJ
    Food Microbiol; 2020 Dec; 92():103590. PubMed ID: 32950134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inactivation of Listeria monocytogenes on frankfurters by plant-derived antimicrobials alone or in combination with hydrogen peroxide.
    Upadhyay A; Upadhyaya I; Kollanoor-Johny A; Ananda Baskaran S; Mooyottu S; Karumathil D; Venkitanarayanan K
    Int J Food Microbiol; 2013 May; 163(2-3):114-8. PubMed ID: 23558194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage.
    de Oliveira CE; Magnani M; de Sales CV; Pontes AL; Campos-Takaki GM; Stamford TC; de Souza EL
    Food Microbiol; 2014 Dec; 44():211-9. PubMed ID: 25084665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.