These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 32840026)
21. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Zeng Z; Guo XP; Cai X; Wang P; Li B; Yang JL; Wang X Microb Biotechnol; 2017 Nov; 10(6):1718-1731. PubMed ID: 28834245 [TBL] [Abstract][Full Text] [Related]
22. Distribution, diversity and functional dissociation of the mac genes in marine biofilms. Ding W; Zhang W; Wang R; Sun Y; Pei B; Gao Z; Qian PY Biofouling; 2019 Feb; 35(2):230-243. PubMed ID: 30950294 [TBL] [Abstract][Full Text] [Related]
23. The Andreo-Vidal A; Sanchez-Amat A; Campillo-Brocal JC Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30545033 [TBL] [Abstract][Full Text] [Related]
24. Correlation between pigmentation and larval settlement deterrence by Pseudoalteromonas sp. sf57. Huang YL; Li M; Yu Z; Qian PY Biofouling; 2011 Mar; 27(3):287-93. PubMed ID: 21390913 [TBL] [Abstract][Full Text] [Related]
25. Metamorphosis of Hydractinia echinata--natural versus artificial induction and developmental plasticity. Seipp S; Schmich J; Kehrwald T; Leitz T Dev Genes Evol; 2007 May; 217(5):385-94. PubMed ID: 17394014 [TBL] [Abstract][Full Text] [Related]
26. Diversity and distribution of the bmp gene cluster and its Polybrominated products in the genus Pseudoalteromonas. Busch J; Agarwal V; Schorn M; Machado H; Moore BS; Rouse GW; Gram L; Jensen PR Environ Microbiol; 2019 May; 21(5):1575-1585. PubMed ID: 30652406 [TBL] [Abstract][Full Text] [Related]
27. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell). Wang H; Qian PY J Exp Zool B Mol Dev Evol; 2010 Jul; 314(5):390-402. PubMed ID: 20535771 [TBL] [Abstract][Full Text] [Related]
28. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Yang LH; Xiong H; Lee OO; Qi SH; Qian PY Lett Appl Microbiol; 2007 Jun; 44(6):625-30. PubMed ID: 17576224 [TBL] [Abstract][Full Text] [Related]
29. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. Alker AT; Farrell MV; Aspiras AE; Dunbar TL; Fedoriouk A; Jones JE; Mikhail SR; Salcedo GY; Moore BS; Shikuma NJ mBio; 2023 Aug; 14(4):e0150223. PubMed ID: 37530556 [TBL] [Abstract][Full Text] [Related]
30. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Zeng Z; Guo XP; Li B; Wang P; Cai X; Tian X; Zhang S; Yang JL; Wang X Appl Microbiol Biotechnol; 2015 Dec; 99(23):10127-39. PubMed ID: 26264135 [TBL] [Abstract][Full Text] [Related]
31. Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Freckelton ML; Nedved BT; Cai YS; Cao S; Turano H; Alegado RA; Hadfield MG Proc Natl Acad Sci U S A; 2022 May; 119(18):e2200795119. PubMed ID: 35467986 [TBL] [Abstract][Full Text] [Related]
32. Laser ablation of the apical sensory organ of Hydroides elegans (Polychaeta) does not inhibit detection of metamorphic cues. Nedved BT; Freckelton ML; Hadfield MG J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34553756 [TBL] [Abstract][Full Text] [Related]
33. Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Rao D; Webb JS; Kjelleberg S Appl Environ Microbiol; 2005 Apr; 71(4):1729-36. PubMed ID: 15811995 [TBL] [Abstract][Full Text] [Related]
34. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Peng LH; Liang X; Chang RH; Mu JY; Chen HE; Yoshida A; Osatomi K; Yang JL Biofouling; 2020 Aug; 36(7):753-765. PubMed ID: 32847400 [TBL] [Abstract][Full Text] [Related]
35. Formation and Function of the Primary Tube During Settlement and Metamorphosis of the Marine Polychaete Huggett MJ; Carpizo-Ituarte EJ; Nedved BT; Hadfield MG Biol Bull; 2021 Apr; 240(2):82-94. PubMed ID: 33939944 [TBL] [Abstract][Full Text] [Related]
36. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene Hu XM; Zhang J; Ding WY; Liang X; Wan R; Dobretsov S; Yang JL Biofouling; 2021 Sep; 37(8):911-921. PubMed ID: 34620016 [TBL] [Abstract][Full Text] [Related]
38. A modular plasmid toolkit applied in marine Proteobacteria reveals functional insights during bacteria-stimulated metamorphosis. Alker AT; Aspiras AE; Dunbar TL; Farrell MV; Fedoriouk A; Jones JE; Mikhail SR; Salcedo GY; Moore BS; Shikuma NJ bioRxiv; 2023 Jan; ():. PubMed ID: 36778221 [TBL] [Abstract][Full Text] [Related]
39. Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata. Guo H; Rischer M; Sperfeld M; Weigel C; Menzel KD; Clardy J; Beemelmanns C Bioorg Med Chem; 2017 Nov; 25(22):6088-6097. PubMed ID: 28893599 [TBL] [Abstract][Full Text] [Related]
40. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Yang JL; Shen PJ; Liang X; Li YF; Bao WY; Li JL Biofouling; 2013; 29(3):247-59. PubMed ID: 23452123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]