BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32840075)

  • 1. [Human activity recognition based on the inertial information and convolutional neural network].
    Li X; Liu X; Li Y; Cao H; Chen Y; Lin Y; Huang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Aug; 37(4):596-601. PubMed ID: 32840075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms.
    Qiu JG; Li Y; Liu HQ; Lin S; Pang L; Sun G; Song YZ
    Math Biosci Eng; 2023 Jul; 20(8):14578-14595. PubMed ID: 37679149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized Activity Recognition with Deep Triplet Embeddings.
    Burns D; Boyer P; Arrowsmith C; Whyne C
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.
    Jiang Y; Song L; Zhang J; Song Y; Yan M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition.
    Kim YW; Lee S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-Learning-Based Character Recognition from Handwriting Motion Data Captured Using IMU and Force Sensors.
    Alemayoh TT; Shintani M; Lee JH; Okamoto S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IMU-Based Fitness Activity Recognition Using CNNs for Time Series Classification.
    Müller PN; Müller AJ; Achenbach P; Göbel S
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Behavior Recognition in Outdoor Sports Based on the Local Error Model and Convolutional Neural Network.
    Hua X; Han L; Jiang Y
    Comput Intell Neurosci; 2022; 2022():6988525. PubMed ID: 35800705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Activity and Motion Pattern Recognition within Indoor Environment Using Convolutional Neural Networks Clustering and Naive Bayes Classification Algorithms.
    Ali A; Samara W; Alhaddad D; Ware A; Saraereh OA
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Sensor-Embedded Neural Network for Human Activity Recognition.
    Shakerian A; Douet V; Shoaraye Nejati A; Landry R
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural networks combined with classification algorithms for the diagnosis of periodontitis.
    Dai F; Liu Q; Guo Y; Xie R; Wu J; Deng T; Zhu H; Deng L; Song L
    Oral Radiol; 2024 Jul; 40(3):357-366. PubMed ID: 38393548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.