These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 32840104)
1. Superlubricity between Graphite Layers in Ultrahigh Vacuum. Liu Y; Wang K; Xu Q; Zhang J; Hu Y; Ma T; Zheng Q; Luo J ACS Appl Mater Interfaces; 2020 Sep; 12(38):43167-43172. PubMed ID: 32840104 [TBL] [Abstract][Full Text] [Related]
2. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips. Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665 [TBL] [Abstract][Full Text] [Related]
3. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer. Sha TD; Pang H; Fang L; Liu HX; Chen XC; Liu DM; Luo JB Nanotechnology; 2020 May; 31(20):205703. PubMed ID: 31995540 [TBL] [Abstract][Full Text] [Related]
4. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers. Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908 [TBL] [Abstract][Full Text] [Related]
5. Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite. Khajeh A; Chen Z; Kim SH; Martini A ACS Appl Mater Interfaces; 2019 Oct; 11(43):40800-40807. PubMed ID: 31578847 [TBL] [Abstract][Full Text] [Related]
6. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure. Li J; Li J; Luo J Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926 [TBL] [Abstract][Full Text] [Related]
7. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443 [TBL] [Abstract][Full Text] [Related]
8. Robust microscale structural superlubricity between graphite and nanostructured surface. Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500 [TBL] [Abstract][Full Text] [Related]
9. Superlubricity between MoS Li H; Wang J; Gao S; Chen Q; Peng L; Liu K; Wei X Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497859 [TBL] [Abstract][Full Text] [Related]
10. Environmental Molecular Effect on the Macroscale Friction Behaviors of Graphene. Li P; Wang B; Ji L; Li H; Chen L; Liu X; Zhou H; Chen J Front Chem; 2021; 9():679417. PubMed ID: 34249858 [TBL] [Abstract][Full Text] [Related]
11. The anomalous effect of electric field on friction for microscale structural superlubric graphite/Au contact. Wang Y; Wang J; Wu T; Chen W; Peng D; Wu Z; Ma M; Zheng Q Natl Sci Rev; 2024 Sep; 11(9):nwae019. PubMed ID: 39144740 [TBL] [Abstract][Full Text] [Related]
12. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions. Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329 [TBL] [Abstract][Full Text] [Related]
13. Structural superlubricity in graphite flakes assembled under ambient conditions. Deng H; Ma M; Song Y; He Q; Zheng Q Nanoscale; 2018 Jul; 10(29):14314-14320. PubMed ID: 30019038 [TBL] [Abstract][Full Text] [Related]
14. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers. Li J; Luo J Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037 [TBL] [Abstract][Full Text] [Related]
15. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes. Li J; Gao T; Luo J Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965 [TBL] [Abstract][Full Text] [Related]
17. The high-speed sliding friction of graphene and novel routes to persistent superlubricity. Liu Y; Grey F; Zheng Q Sci Rep; 2014 May; 4():4875. PubMed ID: 24786521 [TBL] [Abstract][Full Text] [Related]
18. Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges. Chen Z; Khajeh A; Martini A; Kim SH ACS Appl Mater Interfaces; 2020 Jul; 12(26):30007-30015. PubMed ID: 32496047 [TBL] [Abstract][Full Text] [Related]
19. Tribological Properties of Ultrananocrystalline Diamond Films: Mechanochemical Transformation of Sliding Interfaces. Rani R; Panda K; Kumar N; Titovich KA; Ivanovich KV; Vyacheslavovich SA; Lin IN Sci Rep; 2018 Jan; 8(1):283. PubMed ID: 29321546 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and Tribological Properties of Mesocarbon Microbead-Cu Friction Composites. Guo HX; Yang JF Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]