These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32840347)

  • 41. Graphene in macroscopic order: liquid crystals and wet-spun fibers.
    Xu Z; Gao C
    Acc Chem Res; 2014 Apr; 47(4):1267-76. PubMed ID: 24555686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications.
    Mao S; Wen Z; Kim H; Lu G; Hurley P; Chen J
    ACS Nano; 2012 Aug; 6(8):7505-13. PubMed ID: 22838735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies.
    Campbell PG; Worsley MA; Hiszpanski AM; Baumann TF; Biener J
    J Vis Exp; 2015 Nov; (105):e53235. PubMed ID: 26574930
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review.
    Page AJ; Ding F; Irle S; Morokuma K
    Rep Prog Phys; 2015 Feb; 78(3):036501. PubMed ID: 25746411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical properties of carbon nanotube- and graphene-reinforced Araldite LY/Aradur HY 5052 resin epoxy composites: a molecular dynamics study.
    Faragi S; Hamedani A; Alahyarizadeh G; Minuchehr A; Aghaie M; Arab B
    J Mol Model; 2019 Jun; 25(7):191. PubMed ID: 31201520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.
    Li J; Lu W; Suhr J; Chen H; Xiao JQ; Chou TW
    Sci Rep; 2017 May; 7(1):2349. PubMed ID: 28539600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process.
    Elliott JA; Hamm M; Shibuta Y
    J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Green and Tunable Decoration of Graphene with Spherical Nanoparticles Based on Laser Ablation in Water: A Case of Ag Nanoparticle/Graphene Oxide Sheet Composites.
    He H; Wang H; Li K; Zhu J; Liu J; Meng X; Shen X; Zeng X; Cai W
    Langmuir; 2016 Feb; 32(7):1667-73. PubMed ID: 26840791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors.
    Pham DT; Lee TH; Luong DH; Yao F; Ghosh A; Le VT; Kim TH; Li B; Chang J; Lee YH
    ACS Nano; 2015 Feb; 9(2):2018-27. PubMed ID: 25643138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.
    Williams TS; Orloff ND; Baker JS; Miller SG; Natarajan B; Obrzut J; McCorkle LS; Lebron-Colón M; Gaier J; Meador MA; Liddle JA
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9327-34. PubMed ID: 27044063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene Oxide Glue-Electrode for Fabrication of Vertical, Elastic, Conductive Columns.
    Yang L; Zou M; Wu S; Xu W; Wu H; Cao A
    ACS Nano; 2017 Mar; 11(3):2944-2951. PubMed ID: 28212488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber.
    Wang L; Huang Y; Li C; Chen J; Sun X
    Phys Chem Chem Phys; 2015 Jan; 17(3):2228-34. PubMed ID: 25485522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A direct route toward assembly of nanoparticle-carbon nanotube composite materials.
    Han L; Wu W; Kirk FL; Luo J; Maye MM; Kariuki NN; Lin Y; Wang C; Zhong CJ
    Langmuir; 2004 Jul; 20(14):6019-25. PubMed ID: 16459625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites.
    Nam DH; Cha SI; Jeong YJ; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7365-9. PubMed ID: 24245256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of graphene-carbon nanotube papers decorated with manganese oxide nanoneedles on the graphene sheets for supercapacitors.
    Kim M; Hwang Y; Kim J
    Phys Chem Chem Phys; 2014 Jan; 16(1):351-61. PubMed ID: 24257540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrinsic conductivity of carbon nanotubes and graphene sheets having a realistic geometry.
    Vargas-Lara F; Hassan AM; Garboczi EJ; Douglas JF
    J Chem Phys; 2015 Nov; 143(20):204902. PubMed ID: 26627970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.