These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32840367)
1. PhosphoShield: Improving Trypsin Digestion of Phosphoproteins by Shielding the Negatively Charged Phosphate Moiety. Bubis JA; Gorshkov V; Gorshkov MV; Kjeldsen F J Am Soc Mass Spectrom; 2020 Oct; 31(10):2053-2060. PubMed ID: 32840367 [TBL] [Abstract][Full Text] [Related]
2. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782 [TBL] [Abstract][Full Text] [Related]
3. Impact of digestion conditions on phosphoproteomics. Dickhut C; Feldmann I; Lambert J; Zahedi RP J Proteome Res; 2014 Jun; 13(6):2761-70. PubMed ID: 24724590 [TBL] [Abstract][Full Text] [Related]
4. Variable Digestion Strategies for Phosphoproteomics Analysis. Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929 [TBL] [Abstract][Full Text] [Related]
5. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
6. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
7. A Comprehensive Identification of Chicken Egg White Phosphoproteomics Based on a Novel Digestion Approach. Sun Y; Jin H; Sun H; Sheng L J Agric Food Chem; 2020 Aug; 68(34):9213-9222. PubMed ID: 32786861 [TBL] [Abstract][Full Text] [Related]
8. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
9. An Augmented Multiple-Protease-Based Human Phosphopeptide Atlas. Giansanti P; Aye TT; van den Toorn H; Peng M; van Breukelen B; Heck AJ Cell Rep; 2015 Jun; 11(11):1834-43. PubMed ID: 26074081 [TBL] [Abstract][Full Text] [Related]
10. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses: application to cell signaling events of interferon-gamma-stimulated macrophages. Marcantonio M; Trost M; Courcelles M; Desjardins M; Thibault P Mol Cell Proteomics; 2008 Apr; 7(4):645-60. PubMed ID: 18006492 [TBL] [Abstract][Full Text] [Related]
11. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551 [TBL] [Abstract][Full Text] [Related]
12. Mimicking LysC Proteolysis by 'Arginine Modification-cum-Trypsin Digestion': Comparison of Bottom-up & Middle-down Proteomic Approaches by ESI Q-TOF MS. Pandeswari PB; Chary RN; Kamalanathan AS; Prabhakar S; Sabareesh V Protein Pept Lett; 2021; 28(12):1379-1390. PubMed ID: 34587878 [TBL] [Abstract][Full Text] [Related]
13. Rapid Shotgun Phosphoproteomics Analysis. Carrera M; Cañas B; Lopez-Ferrer D Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721 [TBL] [Abstract][Full Text] [Related]
14. Increasing phosphoproteomic coverage through sequential digestion by complementary proteases. Gilmore JM; Kettenbach AN; Gerber SA Anal Bioanal Chem; 2012 Jan; 402(2):711-20. PubMed ID: 22002561 [TBL] [Abstract][Full Text] [Related]
15. ArgC-Like Digestion: Complementary or Alternative to Tryptic Digestion? Golghalyani V; Neupärtl M; Wittig I; Bahr U; Karas M J Proteome Res; 2017 Feb; 16(2):978-987. PubMed ID: 28051317 [TBL] [Abstract][Full Text] [Related]
16. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955 [TBL] [Abstract][Full Text] [Related]
17. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. Lee DG; Kwon J; Eom CY; Kang YM; Roh SW; Lee KB; Choi JS J Microbiol; 2015 Apr; 53(4):279-87. PubMed ID: 25845541 [TBL] [Abstract][Full Text] [Related]
18. Evaluation and minimization of nonspecific tryptic cleavages in proteomic sample preparation. Lin Z; Ren Y; Shi Z; Zhang K; Yang H; Liu S; Hao P Rapid Commun Mass Spectrom; 2020 May; 34(10):e8733. PubMed ID: 32031715 [TBL] [Abstract][Full Text] [Related]
19. Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Kreuzer J; Edwards A; Haas W Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085 [TBL] [Abstract][Full Text] [Related]
20. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells. Ye X; Li L Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]