BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32840502)

  • 1.
    Wang X; Zha J; Zhang W; Zhang W; Tang B
    Analyst; 2020 Sep; 145(18):6119-6124. PubMed ID: 32840502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe.
    Li S; Song D; Huang W; Li Z; Liu Z
    Anal Chem; 2020 Feb; 92(3):2802-2808. PubMed ID: 31903746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo.
    Han C; Yang H; Chen M; Su Q; Feng W; Li F
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27968-75. PubMed ID: 26618279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel intramolecular charge transfer-based near-infrared fluorescent probe with large Stokes shift for highly sensitive detection of cysteine in vivo.
    Ding X; Yang B; Liu Z; Shen M; Fan Z; Wang X; Yu W
    Anal Chim Acta; 2023 Nov; 1280():341873. PubMed ID: 37858558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo.
    Yin K; Yu F; Zhang W; Chen L
    Biosens Bioelectron; 2015 Dec; 74():156-64. PubMed ID: 26141101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo.
    Gu QS; Yang ZC; Chao JJ; Li L; Mao GJ; Xu F; Li CY
    Anal Chem; 2023 Aug; 95(33):12478-12486. PubMed ID: 37555783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells.
    Cai S; Liu C; Jiao X; Zhao L; Zeng X
    J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Infrared Fluorescent and Photoacoustic Dual-Mode Probe for Highly Sensitive and Selective Imaging of Cysteine
    Chen Z; Wang B; Liang Y; Shi L; Cen X; Zheng L; Liang E; Huang L; Cheng K
    Anal Chem; 2022 Aug; 94(30):10737-10744. PubMed ID: 35876030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic/fluorescence dual-modality cyanine-based probe for real-time imaging of endogenous cysteine and in situ diagnosis of cervical cancer in vivo.
    Zou X; Zhao Y; Lin W
    Anal Chim Acta; 2023 Jan; 1239():340713. PubMed ID: 36628718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Specific Cys Fluorescence Probe for Living Mouse Brain Imaging via Evading Reaction with Other Biothiols.
    Zhang Y; Wang X; Bai X; Li P; Su D; Zhang W; Zhang W; Tang B
    Anal Chem; 2019 Jul; 91(13):8591-8594. PubMed ID: 31140781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish.
    He L; Yang X; Xu K; Lin W
    Anal Chem; 2017 Sep; 89(17):9567-9573. PubMed ID: 28791863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples.
    Li SJ; Fu YJ; Li CY; Li YF; Yi LH; Ou-Yang J
    Anal Chim Acta; 2017 Nov; 994():73-81. PubMed ID: 29126471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment evaluation of Rheumatoid arthritis by in situ fluorescence imaging of the Golgi cysteine.
    Wang H; Wen N; Li P; Xiu T; Shang S; Zhang W; Zhang W; Qiao J; Tang B
    Talanta; 2024 Apr; 270():125532. PubMed ID: 38086224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing and evaluating mitochondrial cysteine via near-infrared fluorescence imaging in cells, tissues and in vivo under hypoxia/reperfusion stress.
    Zhang X; Zhang L; Wang X; Han X; Huang Y; Li B; Chen L
    J Hazard Mater; 2021 Oct; 419():126476. PubMed ID: 34323707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria-Anchored Colorimetric and Ratiometric Fluorescent Chemosensor for Visualizing Cysteine/Homocysteine in Living Cells and
    Yang M; Fan J; Sun W; Du J; Peng X
    Anal Chem; 2019 Oct; 91(19):12531-12537. PubMed ID: 31507158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring cysteine level changes under LPS or H
    Jing X; Yu F; Lin W
    Anal Chim Acta; 2021 Aug; 1174():338738. PubMed ID: 34247736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish.
    Dai Y; Xue T; Zhang X; Misal S; Ji H; Qi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():365-374. PubMed ID: 30921659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift.
    Qi Y; Huang Y; Li B; Zeng F; Wu S
    Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel NIR fluorescence probe with cysteine-activated structure for specific detection of cysteine and its application in vitro and in vivo.
    Ge C; Shen F; Yin Y; Chang K; Zhang X; Zhou P; Li J; Liu Y; Lu C
    Talanta; 2021 Feb; 223(Pt 2):121758. PubMed ID: 33298274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.