These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32840541)

  • 1. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory.
    Joo S; Durang X; Lee OC; Jeon JH
    Soft Matter; 2020 Oct; 16(40):9188-9201. PubMed ID: 32840541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation.
    Han HT; Joo S; Sakaue T; Jeon JH
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active bath-induced localization and collapse of passive semiflexible polymers.
    Mousavi SM; Gompper G; Winkler RG
    J Chem Phys; 2021 Jul; 155(4):044902. PubMed ID: 34340385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of a two-dimensional active polymer chain with a rotation-restricted active head.
    Hu HX; Shen YF; Wang C; Luo MB
    Soft Matter; 2022 Nov; 18(46):8820-8829. PubMed ID: 36367147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of active Brownian particle diffusion in polymer solutions.
    Du Y; Jiang H; Hou Z
    Soft Matter; 2019 Feb; 15(9):2020-2031. PubMed ID: 30724318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-crowding coupling effect on the diffusion dynamics of a self-propelled particle in polymer solutions.
    Yuan C; Chen A; Zhang B; Zhao N
    Phys Chem Chem Phys; 2019 Nov; 21(43):24112-24125. PubMed ID: 31657399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of self-propelled tracer particles inside a polymer network.
    Kumar P; Chakrabarti R
    Phys Chem Chem Phys; 2023 Jan; 25(3):1937-1946. PubMed ID: 36541408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional Brownian motion approach to polymer translocation: the governing equation of motion.
    Dubbeldam JL; Rostiashvili VG; Milchev A; Vilgis TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011802. PubMed ID: 21405705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional Langevin equation.
    Lutz E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051106. PubMed ID: 11735899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions.
    Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R
    Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Brownian motion with memory delay induced by a viscoelastic medium.
    Sprenger AR; Bair C; Löwen H
    Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent inertia of self-propelled particles: The Langevin rocket.
    Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H
    Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Work fluctuation relation of an active Brownian particle in a viscoelastic fluid.
    Narinder N; Paul S; Bechinger C
    Phys Rev E; 2021 Sep; 104(3-1):034605. PubMed ID: 34654101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.