BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32840546)

  • 1. Atomic structure causing an obvious difference in thermal conductance at the Pd-H
    Li S; Chen Y; Zhao J; Wang C; Wei N
    Nanoscale; 2020 Sep; 12(34):17870-17879. PubMed ID: 32840546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal transport across flat and curved gold-water interfaces: Assessing the effects of the interfacial modeling parameters.
    Paniagua-Guerra LE; Ramos-Alvarado B
    J Chem Phys; 2023 Apr; 158(13):134717. PubMed ID: 37031121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-Liquid Thermal Transport and Its Relationship with Wettability and the Interfacial Liquid Structure.
    Ramos-Alvarado B; Kumar S; Peterson GP
    J Phys Chem Lett; 2016 Sep; 7(17):3497-501. PubMed ID: 27542622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance.
    Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE
    Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.
    Han H; Mérabia S; Müller-Plathe F
    J Phys Chem Lett; 2017 May; 8(9):1946-1951. PubMed ID: 28403613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures.
    Yin E; Li Q; Lian W
    Phys Chem Chem Phys; 2023 Feb; 25(5):3629-3638. PubMed ID: 36263751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water.
    Wang YH; Zheng S; Yang WM; Zhou RY; He QF; Radjenovic P; Dong JC; Li S; Zheng J; Yang ZL; Attard G; Pan F; Tian ZQ; Li JF
    Nature; 2021 Dec; 600(7887):81-85. PubMed ID: 34853456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculations of interfacial thermal transport properties between SiC/Si substrates and compounds of boron with selected group V elements.
    Sun Z; Yuan K; Zhang X; Tang D
    Phys Chem Chem Phys; 2019 Mar; 21(11):6011-6020. PubMed ID: 30810132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of the depletion layer with the Helmholtz layer in the anatase TiO2-H2O interface via molecular dynamics simulations.
    Sang L; Zhang Y; Wang J; Zhao Y; Chen YT
    Phys Chem Chem Phys; 2016 Jun; 18(22):15427-35. PubMed ID: 27215493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of tunable thermal conductance at solid/porous crystalline solid interfaces induced by water adsorbates.
    Wang G; Fan H; Li J; Li Z; Zhou Y
    Nat Commun; 2024 Mar; 15(1):2304. PubMed ID: 38485939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water.
    Wilson BA; Nielsen SO; Randrianalisoa JH; Qin Z
    J Chem Phys; 2022 Aug; 157(5):054703. PubMed ID: 35933210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental observation of localized interfacial phonon modes.
    Cheng Z; Li R; Yan X; Jernigan G; Shi J; Liao ME; Hines NJ; Gadre CA; Idrobo JC; Lee E; Hobart KD; Goorsky MS; Pan X; Luo T; Graham S
    Nat Commun; 2021 Nov; 12(1):6901. PubMed ID: 34824284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interfacial molecular mobility on thermal boundary conductance at solid-liquid interface.
    Anandakrishnan A; Ramos-Alvarado B; Kannam SK; Sathian SP
    J Chem Phys; 2023 Mar; 158(9):094710. PubMed ID: 36889936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.