BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32840766)

  • 1. Identification of significant risks in pediatric acute lymphoblastic leukemia (ALL) through machine learning (ML) approach.
    Mahmood N; Shahid S; Bakhshi T; Riaz S; Ghufran H; Yaqoob M
    Med Biol Eng Comput; 2020 Nov; 58(11):2631-2640. PubMed ID: 32840766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Cranial Radiotherapy Treatment in Pediatric Acute Lymphoblastic Leukemia Patients Using Machine Learning: A Case Study at MAHAK Hospital.
    Kashef A; Khatibi T; Mehrvar A
    Asian Pac J Cancer Prev; 2020 Nov; 21(11):3211-3219. PubMed ID: 33247677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia.
    Pan L; Liu G; Lin F; Zhong S; Xia H; Sun X; Liang H
    Sci Rep; 2017 Aug; 7(1):7402. PubMed ID: 28784991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Artificial Intelligence-Based Diagnostic System for Acute Lymphoblastic Leukemia Detection.
    El Alaoui Y; Padmanabhan R; Elomri A; Qaraqe MK; El Omri H; Yasin Taha R
    Stud Health Technol Inform; 2023 Jun; 305():265-268. PubMed ID: 37387013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ovarian torsion: developing a machine-learned algorithm for diagnosis.
    Otjen JP; Stanescu AL; Alessio AM; Parisi MT
    Pediatr Radiol; 2020 May; 50(5):706-714. PubMed ID: 31970456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying machine learning to identify pediatric patients with newly diagnosed acute lymphoblastic leukemia using administrative data.
    Cao L; Huang YS; Getz KD; Seif AE; Ruiz J; Miller TP; Fisher BT; Aplenc R; Li Y
    Pediatr Blood Cancer; 2024 Mar; 71(3):e30858. PubMed ID: 38189744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The analysis of the effects of acute rheumatic fever in childhood on cardiac disease with data mining.
    Emre İE; Erol N; Ayhan Yİ; Özkan Y; Erol Ç
    Int J Med Inform; 2019 Mar; 123():68-75. PubMed ID: 30654905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning to predict high-dose methotrexate-related neutropenia and fever in children with B-cell acute lymphoblastic leukemia.
    Zhan M; Chen ZB; Ding CC; Qu Q; Wang GQ; Liu S; Wen FQ
    Leuk Lymphoma; 2021 Oct; 62(10):2502-2513. PubMed ID: 33899650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study.
    Shouval R; Labopin M; Bondi O; Mishan-Shamay H; Shimoni A; Ciceri F; Esteve J; Giebel S; Gorin NC; Schmid C; Polge E; Aljurf M; Kroger N; Craddock C; Bacigalupo A; Cornelissen JJ; Baron F; Unger R; Nagler A; Mohty M
    J Clin Oncol; 2015 Oct; 33(28):3144-51. PubMed ID: 26240227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explainable machine learning for chronic lymphocytic leukemia treatment prediction using only inexpensive tests.
    Meiseles A; Paley D; Ziv M; Hadid Y; Rokach L; Tadmor T
    Comput Biol Med; 2022 Jun; 145():105490. PubMed ID: 35405402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploratory Data Mining Techniques (Decision Tree Models) for Examining the Impact of Internet-Based Cognitive Behavioral Therapy for Tinnitus: Machine Learning Approach.
    Rodrigo H; Beukes EW; Andersson G; Manchaiah V
    J Med Internet Res; 2021 Nov; 23(11):e28999. PubMed ID: 34726612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pediatric Injury Surveillance From Uncoded Emergency Department Admission Records in Italy: Machine Learning-Based Text-Mining Approach.
    Azzolina D; Bressan S; Lorenzoni G; Baldan GA; Bartolotta P; Scognamiglio F; Francavilla A; Lanera C; Da Dalt L; Gregori D
    JMIR Public Health Surveill; 2023 Jul; 9():e44467. PubMed ID: 37436799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I
    Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia.
    Almeida RS; Costa E Silva M; Coutinho LL; Garcia Gomes R; Pedrosa F; Massaro JD; Donadi EA; Lucena-Silva N
    Hematol Oncol; 2019 Feb; 37(1):103-112. PubMed ID: 30393877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prognostic significance of sex in childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study.
    Shuster JJ; Wacker P; Pullen J; Humbert J; Land VJ; Mahoney DH; Lauer S; Look AT; Borowitz MJ; Carroll AJ; Camitta B
    J Clin Oncol; 1998 Aug; 16(8):2854-63. PubMed ID: 9704739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk prediction for delayed clearance of high-dose methotrexate in pediatric hematological malignancies by machine learning.
    Zhan M; Chen Z; Ding C; Qu Q; Wang G; Liu S; Wen F
    Int J Hematol; 2021 Oct; 114(4):483-493. PubMed ID: 34170480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GenSo-FDSS: a neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data.
    Tung WL; Quek C
    Artif Intell Med; 2005 Jan; 33(1):61-88. PubMed ID: 15617982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
    Senan EM; Abunadi I; Jadhav ME; Fati SM
    Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.