BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 32840769)

  • 1. END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells.
    Wong N; John S; Nussenzweig A; Canela A
    Methods Mol Biol; 2021; 2153():9-31. PubMed ID: 32840769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing.
    Zhu Y; Biernacka A; Pardo B; Dojer N; Forey R; Skrzypczak M; Fongang B; Nde J; Yousefi R; Pasero P; Ginalski K; Rowicka M
    Nat Commun; 2019 May; 10(1):2313. PubMed ID: 31127121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping DNA Breaks by Next-Generation Sequencing.
    Baranello L; Kouzine F; Wojtowicz D; Cui K; Zhao K; Przytycka TM; Capranico G; Levens D
    Methods Mol Biol; 2018; 1672():155-166. PubMed ID: 29043624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
    Canela A; Sridharan S; Sciascia N; Tubbs A; Meltzer P; Sleckman BP; Nussenzweig A
    Mol Cell; 2016 Sep; 63(5):898-911. PubMed ID: 27477910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods.
    Mirzazadeh R; Kallas T; Bienko M; Crosetto N
    Methods Mol Biol; 2018; 1672():167-194. PubMed ID: 29043625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNCC: an analysis tool to determine genome-wide DNA break end structure at single-nucleotide resolution.
    Szlachta K; Raimer HM; Comeau LD; Wang YH
    BMC Genomics; 2020 Jan; 21(1):25. PubMed ID: 31914926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq.
    Kara N; Krueger F; Rugg-Gunn P; Houseley J
    PLoS Biol; 2021 Mar; 19(3):e3000886. PubMed ID: 33760805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Next Generation Sequencing to Identify Mutations Associated with Repair of a CAS9-induced Double Strand Break Near the CD4 Promoter.
    Hu C; Doerksen T; Bugbee T; Wallace NA; Palinski R
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.
    Hu J; Meyers RM; Dong J; Panchakshari RA; Alt FW; Frock RL
    Nat Protoc; 2016 May; 11(5):853-71. PubMed ID: 27031497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS.
    Biernacka A; Skrzypczak M; Zhu Y; Pasero P; Rowicka M; Ginalski K
    Nat Protoc; 2021 Feb; 16(2):1034-1061. PubMed ID: 33349705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq.
    Dobbs FM; van Eijk P; Fellows MD; Loiacono L; Nitsch R; Reed SH
    Nat Commun; 2022 Jul; 13(1):3989. PubMed ID: 35810156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S1-seq Assay for Mapping Processed DNA Ends.
    Mimitou EP; Keeney S
    Methods Enzymol; 2018; 601():309-330. PubMed ID: 29523237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification and genome-wide mapping of DNA double-strand breaks.
    Grégoire MC; Massonneau J; Leduc F; Arguin M; Brazeau MA; Boissonneault G
    DNA Repair (Amst); 2016 Dec; 48():63-68. PubMed ID: 27825743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing Homologous Recombination at a Genome-Wide Level.
    Arnould C; Rocher V; Legube G
    Methods Mol Biol; 2021; 2153():427-438. PubMed ID: 32840796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR off-target detection with DISCOVER-seq.
    Wienert B; Wyman SK; Yeh CD; Conklin BR; Corn JE
    Nat Protoc; 2020 May; 15(5):1775-1799. PubMed ID: 32313254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the genetic landscape of DNA double-strand break repair.
    Hussmann JA; Ling J; Ravisankar P; Yan J; Cirincione A; Xu A; Simpson D; Yang D; Bothmer A; Cotta-Ramusino C; Weissman JS; Adamson B
    Cell; 2021 Oct; 184(22):5653-5669.e25. PubMed ID: 34672952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing.
    Zilio N; Ulrich HD
    FEBS J; 2021 Jul; 288(13):3948-3961. PubMed ID: 32965079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.