These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32840812)

  • 21. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.
    Yousefi AM; Smucker B; Naber A; Wyrick C; Shaw C; Bennett K; Szekely S; Focke C; Wood KA
    J Biomater Sci Polym Ed; 2018 Feb; 29(3):195-216. PubMed ID: 29161997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Powder-based 3D printing for bone tissue engineering.
    Brunello G; Sivolella S; Meneghello R; Ferroni L; Gardin C; Piattelli A; Zavan B; Bressan E
    Biotechnol Adv; 2016; 34(5):740-753. PubMed ID: 27086202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery.
    Tan DK; Maniruzzaman M; Nokhodchi A
    Pharmaceutics; 2018 Oct; 10(4):. PubMed ID: 30356002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholecalciferol as Bioactive Plasticizer of High Molecular Weight Poly(D,L-Lactic Acid) Scaffolds for Bone Regeneration.
    Calore AR; Hadavi D; Honing M; Albillos-Sanchez A; Mota C; Bernaerts K; Harings J; Moroni L
    Tissue Eng Part C Methods; 2022 Jul; 28(7):335-350. PubMed ID: 35323028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.
    Hart LR; Li S; Sturgess C; Wildman R; Jones JR; Hayes W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3115-22. PubMed ID: 26766139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.
    Trachtenberg JE; Mountziaris PM; Miller JS; Wettergreen M; Kasper FK; Mikos AG
    J Biomed Mater Res A; 2014 Dec; 102(12):4326-35. PubMed ID: 25493313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications.
    van Bochove B; Grijpma DW
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):77-106. PubMed ID: 30497347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.
    Hung KC; Tseng CS; Hsu SH
    Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds.
    Güney A; Malda J; Dhert WJA; Grijpma DW
    Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigations on joining of orthopaedic scaffold with rapid tooling.
    Ranjan N; Singh R; Ahuja I
    Proc Inst Mech Eng H; 2019 Jul; 233(7):754-760. PubMed ID: 31132941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in additive manufacturing for bone tissue engineering scaffolds.
    Moreno Madrid AP; Vrech SM; Sanchez MA; Rodriguez AP
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():631-644. PubMed ID: 30948100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid prototyping composite and complex scaffolds with PAM2.
    Vozzi G; Tirella A; Ahluwalia A
    Methods Mol Biol; 2012; 868():57-69. PubMed ID: 22692604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable and biocompatible polymers for tissue engineering application: a review.
    Asghari F; Samiei M; Adibkia K; Akbarzadeh A; Davaran S
    Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):185-192. PubMed ID: 26923861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.