These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32841026)

  • 1. Discovering Protein Conformational Flexibility through Artificial-Intelligence-Aided Molecular Dynamics.
    Smith Z; Ravindra P; Wang Y; Cooley R; Tiwary P
    J Phys Chem B; 2020 Sep; 124(38):8221-8229. PubMed ID: 32841026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotamer decomposition and protein dynamics: efficiently analyzing dihedral populations from molecular dynamics.
    Watanabe H; Elstner M; Steinbrecher T
    J Comput Chem; 2013 Jan; 34(3):198-205. PubMed ID: 23007849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From data to noise to data for mixing physics across temperatures with generative artificial intelligence.
    Wang Y; Herron L; Tiwary P
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2203656119. PubMed ID: 35925885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering conformational sub-states relevant to protein function.
    Ramanathan A; Savol AJ; Langmead CJ; Agarwal PK; Chennubhotla CS
    PLoS One; 2011 Jan; 6(1):e15827. PubMed ID: 21297978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the conformational diversity of proteins.
    Schlessinger A; Bonomi M
    Elife; 2022 Apr; 11():. PubMed ID: 35443909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the function of domain linkers in regulating the dynamics of multi-domain fusion proteins by microsecond molecular dynamics simulations and artificial intelligence.
    Wang B; Su Z; Wu Y
    Proteins; 2021 Jul; 89(7):884-895. PubMed ID: 33620752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Multiple Pathways in T4 Lysozyme Substep Conformational Motions by Single-Molecule Enzymology and Modeling.
    Lu M; Lu HP
    J Phys Chem B; 2017 May; 121(19):5017-5024. PubMed ID: 28425708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations.
    Cunha KC; Rusu VH; Viana IF; Marques ET; Dhalia R; Lins RD
    Biopolymers; 2015 Jun; 103(6):351-61. PubMed ID: 25677872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the Diversity of the CDR-H3 Loop Conformational Ensembles in Relationship to Antibody Binding Properties.
    Fernández-Quintero ML; Loeffler JR; Kraml J; Kahler U; Kamenik AS; Liedl KR
    Front Immunol; 2018; 9():3065. PubMed ID: 30666252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.
    Ahmed A; Rippmann F; Barnickel G; Gohlke H
    J Chem Inf Model; 2011 Jul; 51(7):1604-22. PubMed ID: 21639141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive approach for protein aggregation: Correlation of protein surface characteristics and conformational flexibility to protein aggregation propensity.
    Galm L; Amrhein S; Hubbuch J
    Biotechnol Bioeng; 2017 Jun; 114(6):1170-1183. PubMed ID: 26853436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete analyses of protein dynamics.
    Narwani TJ; Craveur P; Shinada NK; Floch A; Santuz H; Vattekatte AM; Srinivasan N; Rebehmed J; Gelly JC; Etchebest C; de Brevern AG
    J Biomol Struct Dyn; 2020 Jul; 38(10):2988-3002. PubMed ID: 31361191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Conformational Flexibility in Monte Carlo Simulations of Many-Protein Systems.
    Majumdar BB; Prytkova V; Wong EK; Freites JA; Tobias DJ; Heyden M
    J Chem Theory Comput; 2019 Feb; 15(2):1399-1408. PubMed ID: 30633517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational dynamics of human protein kinase CK2α and its effect on function and inhibition.
    Srivastava A; Hirota T; Irle S; Tama F
    Proteins; 2018 Mar; 86(3):344-353. PubMed ID: 29243286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models.
    Kmiecik S; Kouza M; Badaczewska-Dawid AE; Kloczkowski A; Kolinski A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach for investigating protein flexibility based on Constraint Logic Programming. The first application in the case of the estrogen receptor.
    Dal Palú A; Spyrakis F; Cozzini P
    Eur J Med Chem; 2012 Mar; 49():127-40. PubMed ID: 22277571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures, dynamics, complexes, and functions: From classic computation to artificial intelligence.
    Frasnetti E; Magni A; Castelli M; Serapian SA; Moroni E; Colombo G
    Curr Opin Struct Biol; 2024 Aug; 87():102835. PubMed ID: 38744148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.