These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32841031)

  • 1. Assessment of Force Field Accuracy Using Cryogenic Electron Microscopy Data of Hyper-thermostable Glutamate Dehydrogenase.
    Oroguchi T; Oide M; Wakabayashi T; Nakasako M
    J Phys Chem B; 2020 Oct; 124(39):8479-8494. PubMed ID: 32841031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields.
    Gopal SM; Wingbermühle S; Schnatwinkel J; Juber S; Herrmann C; Schäfer LV
    J Phys Chem B; 2021 Jan; 125(1):24-35. PubMed ID: 33382616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy.
    Oide M; Kato T; Oroguchi T; Nakasako M
    FEBS J; 2020 Aug; 287(16):3472-3493. PubMed ID: 31976609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Chem Phys; 2020 Feb; 152(8):084102. PubMed ID: 32113361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics.
    Pantelopulos GA; Mukherjee S; Voelz VA
    Proteins; 2015 Sep; 83(9):1665-76. PubMed ID: 26138282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved side-chain torsion potentials for the Amber ff99SB protein force field.
    Lindorff-Larsen K; Piana S; Palmo K; Maragakis P; Klepeis JL; Dror RO; Shaw DE
    Proteins; 2010 Jun; 78(8):1950-8. PubMed ID: 20408171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.
    Beauchamp KA; Lin YS; Das R; Pande VS
    J Chem Theory Comput; 2012 Apr; 8(4):1409-1414. PubMed ID: 22754404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Ensemble of CD4 Cytoplasmic Tail (402-419) Reveals a Nearly Flat Free-Energy Landscape with Local α-Helical Order in Aqueous Solution.
    Ahalawat N; Arora S; Murarka RK
    J Phys Chem B; 2015 Aug; 119(34):11229-42. PubMed ID: 26132982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble State of Villin Headpiece Protein as a Tool in the Assessment of MD Force Fields.
    Andrews B; Long K; Urbanc B
    J Phys Chem B; 2021 Jul; 125(25):6897-6911. PubMed ID: 34143637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β
    Weber OC; Uversky VN
    Intrinsically Disord Proteins; 2017; 5(1):e1377813. PubMed ID: 30250773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.
    Janowski PA; Liu C; Deckman J; Case DA
    Protein Sci; 2016 Jan; 25(1):87-102. PubMed ID: 26013419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating amber force fields using computed NMR chemical shifts.
    Koes DR; Vries JK
    Proteins; 2017 Oct; 85(10):1944-1956. PubMed ID: 28688107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of a Disordered Peptide-Structural Effects and Force Field Inconsistencies.
    Rieloff E; Skepö M
    J Chem Theory Comput; 2020 Mar; 16(3):1924-1935. PubMed ID: 32050065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modern non-polarizable force fields diverge in modeling the enzyme-substrate complex of a canonical serine protease.
    Belyaeva J; Zlobin A; Maslova V; Golovin A
    Phys Chem Chem Phys; 2023 Feb; 25(8):6352-6361. PubMed ID: 36779321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Differences between Current Molecular Dynamics Force Fields To Represent Local Properties of Intrinsically Disordered Proteins.
    Yu L; Li DW; Brüschweiler R
    J Phys Chem B; 2021 Jan; 125(3):798-804. PubMed ID: 33444020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.