These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32841209)

  • 1. Freezing, melting and dynamics of supercooled water confined in porous glass.
    Neffati R; Judeinstein P; Rault J
    J Phys Condens Matter; 2020 Aug; 32(46):. PubMed ID: 32841209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercooled nano-droplets of water confined in hydrophobic rubber.
    Neffati R; Judeinstein P; Rault J
    Phys Chem Chem Phys; 2021 Nov; 23(44):25347-25355. PubMed ID: 34750601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An NMR study on the mechanisms of freezing and melting of water confined in spherically mesoporous silicas SBA-16.
    Miyatou T; Ohashi R; Ida T; Kittaka S; Mizuno M
    Phys Chem Chem Phys; 2016 Jul; 18(27):18555-62. PubMed ID: 27346613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nature of the Low-Temperature Crossover of Water in Hard Confinement.
    Beilinson Y; Schiller V; Regentin J; Melillo JH; Greenbaum A; Antropova T; Cerveny S; Vogel M; Feldman Y
    J Phys Chem B; 2023 Jun; 127(22):5128-5140. PubMed ID: 37229523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat capacity and nuclear magnetic relaxation times of non-freezing water restrained by polysaccharides, revisited.
    Hatakeyama T; Hatakeyama H
    J Biomater Sci Polym Ed; 2017; 28(10-12):1215-1230. PubMed ID: 28277008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase behavior and molecular mobility of n-octylcyanobiphenyl confined to molecular sieves: dependence on the pore size.
    Frunza L; Frunza S; Kosslick H; Schönhals A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051701. PubMed ID: 19113137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting of aqueous NaCl solutions in porous materials: shifted phase transition distribution (SIDI) approach for determining NMR cryoporometry pore size distributions.
    Mailhiot SE; Tolkkinen K; Henschel H; Mareš J; Hanni M; Nieminen MT; Telkki VV
    Phys Chem Chem Phys; 2024 Jan; 26(4):3441-3450. PubMed ID: 38205817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the crystallization tendencies of pharmaceutical glasses on the applicability of the Adam-Gibbs-Vogel and Vogel-Tammann-Fulcher equations in the prediction of their long-term physical stability.
    Yamaguchi K; Mizoguchi R; Kawakami K; Miyazaki T
    Int J Pharm; 2022 Oct; 626():122158. PubMed ID: 36058407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting Point of a Confined Fluid within Nanopores: The Composition Effect on the Gibbs-Thomson Equation.
    Jin D; Zhong J
    J Phys Chem B; 2023 Jun; 127(23):5295-5307. PubMed ID: 37272600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoconfinement Effects on the Glass Transition and Crystallization Behaviors of Nifedipine.
    Cheng S; McKenna GB
    Mol Pharm; 2019 Feb; 16(2):856-866. PubMed ID: 30615456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments.
    Schönhals A; Goering H; Schick Ch; Frick B; Zorn R
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):173-8. PubMed ID: 15007697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neutron spin echo study of low-temperature water confined in the spherical silica pores of SBA-16.
    Kittaka S; Yoshida K; Yamaguchi T; Bellissent Funel MC; Fouquet P
    Phys Chem Chem Phys; 2017 Apr; 19(16):10502-10510. PubMed ID: 28387391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water in Mesoporous Confinement: Glass-To-Liquid Transition or Freezing of Molecular Reorientation Dynamics?
    Schranz W; Soprunyuk V
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31581496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transitions and dynamics in ionic liquid crystals confined in nanopores.
    Nobori H; Fujimoto D; Yoshioka J; Fukao K; Konishi T; Taguchi K
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary water relaxation in a water/dimethyl sulfoxide mixture revealed by deuteron nuclear magnetic resonance and dielectric spectroscopy.
    Lusceac SA; Gainaru C; Ratzke DA; Graf MF; Vogel M
    J Phys Chem B; 2011 Oct; 115(40):11588-96. PubMed ID: 21879716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2H NMR studies on the dynamics of supercooled water in a metal-organic framework.
    Schiller V; Knippen K; Loidl A; Lunkenheimer P; Volkmer D; Vogel M
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37462282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation.
    Webber JB; Anderson R; Strange JH; Tohidi B
    Magn Reson Imaging; 2007 May; 25(4):533-6. PubMed ID: 17466781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.